Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application

Solar concentrators employed in conjunction with highly efficient micro- and meso-channel reactors offer the potential for cost-effective upgrading of the energy content of natural gas, providing a near-term path towards a future solar-fuel economy with reduced carbon dioxide emissions. To fully exp...

Full description

Bibliographic Details
Main Authors: Johnny Saavedra Lopez, Vanessa Lebarbier Dagle, Chinmay A. Deshmane, Libor Kovarik, Robert S. Wegeng, Robert A. Dagle
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/9/10/801
id doaj-6254d982307f440b81419a1844cdc40b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Johnny Saavedra Lopez
Vanessa Lebarbier Dagle
Chinmay A. Deshmane
Libor Kovarik
Robert S. Wegeng
Robert A. Dagle
spellingShingle Johnny Saavedra Lopez
Vanessa Lebarbier Dagle
Chinmay A. Deshmane
Libor Kovarik
Robert S. Wegeng
Robert A. Dagle
Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application
Catalysts
heterogeneous catalysis
syngas production
solar thermochemical
iridium catalyst
rhodium catalyst
author_facet Johnny Saavedra Lopez
Vanessa Lebarbier Dagle
Chinmay A. Deshmane
Libor Kovarik
Robert S. Wegeng
Robert A. Dagle
author_sort Johnny Saavedra Lopez
title Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application
title_short Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application
title_full Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application
title_fullStr Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application
title_full_unstemmed Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application
title_sort methane and ethane steam reforming over mgal<sub>2</sub>o<sub>4</sub>-supported rh and ir catalysts: catalytic implications for natural gas reforming application
publisher MDPI AG
series Catalysts
issn 2073-4344
publishDate 2019-09-01
description Solar concentrators employed in conjunction with highly efficient micro- and meso-channel reactors offer the potential for cost-effective upgrading of the energy content of natural gas, providing a near-term path towards a future solar-fuel economy with reduced carbon dioxide emissions. To fully exploit the heat and mass transfer advantages offered by micro- and meso-channel reactors, highly active and stable natural gas steam reforming catalysts are required. In this paper, we report the catalytic performance of MgAl<sub>2</sub>O<sub>4</sub>-supported Rh (5 wt.%), Ir (5 wt.%), and Ni (15 wt.%) catalysts used for steam reforming of natural gas. Both Rh- and Ir-based catalysts are known to be more active and durable than conventional Ni-based formulations, and recently Ir has been reported to be more active than Rh for methane steam reforming on a turnover basis. Thus, the effectiveness of all three metals to perform natural gas steam reforming was evaluated in this study. Here, the Rh- and Ir-supported catalysts both exhibited higher activity than Ni for steam methane reforming. However, using simulated natural gas feedstock (94.5% methane, 4.0% ethane, 1.0% propane, and 0.5% butane), the Ir catalyst was the least active (on a turnover basis) for steam reforming of higher hydrocarbons (C<sub>2+</sub>) contained in the feedstock when operated at &lt;750 &#176;C. To further investigate the role of higher hydrocarbons, we used an ethane feed and found that hydrogenolysis precedes the steam reforming reaction and that C&#8722;C bond scission over Ir is kinetically slow compared to Rh. Catalyst durability studies revealed the Rh catalyst to be stable under steam methane reforming conditions, as evidenced by two 100-hour duration experiments performed at 850 and 900 &#176;C (steam to carbon [S/C] molar feed ratio = 2.0 mol). However, with the natural gas simulant feed, the Rh catalyst exhibited catalyst deactivation, which we attribute to coking deposits derived from higher hydrocarbons contained in the feedstock. Increasing the S/C molar feed ratio from 1.5 to 2.0 reduced the deactivation rate and stable catalytic performance was demonstrated for 120 h when operated at 850 &#176;C. However, catalytic deactivation was observed when operating at 900 &#176;C. While improvements in steam reforming performance can be achieved through choice of catalyst composition, this study also highlights the importance of considering the effect of higher hydrocarbons contained in natural gas, operating conditions (e.g., temperature, S/C feed ratio), and their effect on catalyst stability. The results of this study conclude that a Rh-supported catalyst was developed that enables very high activities and excellent catalytic stability for both the steam reforming of methane and other higher hydrocarbons contained in natural gas, and under conditions of operation that are amendable to solar thermochemical operations.
topic heterogeneous catalysis
syngas production
solar thermochemical
iridium catalyst
rhodium catalyst
url https://www.mdpi.com/2073-4344/9/10/801
work_keys_str_mv AT johnnysaavedralopez methaneandethanesteamreformingovermgalsub2subosub4subsupportedrhandircatalystscatalyticimplicationsfornaturalgasreformingapplication
AT vanessalebarbierdagle methaneandethanesteamreformingovermgalsub2subosub4subsupportedrhandircatalystscatalyticimplicationsfornaturalgasreformingapplication
AT chinmayadeshmane methaneandethanesteamreformingovermgalsub2subosub4subsupportedrhandircatalystscatalyticimplicationsfornaturalgasreformingapplication
AT liborkovarik methaneandethanesteamreformingovermgalsub2subosub4subsupportedrhandircatalystscatalyticimplicationsfornaturalgasreformingapplication
AT robertswegeng methaneandethanesteamreformingovermgalsub2subosub4subsupportedrhandircatalystscatalyticimplicationsfornaturalgasreformingapplication
AT robertadagle methaneandethanesteamreformingovermgalsub2subosub4subsupportedrhandircatalystscatalyticimplicationsfornaturalgasreformingapplication
_version_ 1725068771076341760
spelling doaj-6254d982307f440b81419a1844cdc40b2020-11-25T01:35:04ZengMDPI AGCatalysts2073-43442019-09-0191080110.3390/catal9100801catal9100801Methane and Ethane Steam Reforming over MgAl<sub>2</sub>O<sub>4</sub>-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming ApplicationJohnny Saavedra Lopez0Vanessa Lebarbier Dagle1Chinmay A. Deshmane2Libor Kovarik3Robert S. Wegeng4Robert A. Dagle5Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USAInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USAInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USAInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USAInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USAInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USASolar concentrators employed in conjunction with highly efficient micro- and meso-channel reactors offer the potential for cost-effective upgrading of the energy content of natural gas, providing a near-term path towards a future solar-fuel economy with reduced carbon dioxide emissions. To fully exploit the heat and mass transfer advantages offered by micro- and meso-channel reactors, highly active and stable natural gas steam reforming catalysts are required. In this paper, we report the catalytic performance of MgAl<sub>2</sub>O<sub>4</sub>-supported Rh (5 wt.%), Ir (5 wt.%), and Ni (15 wt.%) catalysts used for steam reforming of natural gas. Both Rh- and Ir-based catalysts are known to be more active and durable than conventional Ni-based formulations, and recently Ir has been reported to be more active than Rh for methane steam reforming on a turnover basis. Thus, the effectiveness of all three metals to perform natural gas steam reforming was evaluated in this study. Here, the Rh- and Ir-supported catalysts both exhibited higher activity than Ni for steam methane reforming. However, using simulated natural gas feedstock (94.5% methane, 4.0% ethane, 1.0% propane, and 0.5% butane), the Ir catalyst was the least active (on a turnover basis) for steam reforming of higher hydrocarbons (C<sub>2+</sub>) contained in the feedstock when operated at &lt;750 &#176;C. To further investigate the role of higher hydrocarbons, we used an ethane feed and found that hydrogenolysis precedes the steam reforming reaction and that C&#8722;C bond scission over Ir is kinetically slow compared to Rh. Catalyst durability studies revealed the Rh catalyst to be stable under steam methane reforming conditions, as evidenced by two 100-hour duration experiments performed at 850 and 900 &#176;C (steam to carbon [S/C] molar feed ratio = 2.0 mol). However, with the natural gas simulant feed, the Rh catalyst exhibited catalyst deactivation, which we attribute to coking deposits derived from higher hydrocarbons contained in the feedstock. Increasing the S/C molar feed ratio from 1.5 to 2.0 reduced the deactivation rate and stable catalytic performance was demonstrated for 120 h when operated at 850 &#176;C. However, catalytic deactivation was observed when operating at 900 &#176;C. While improvements in steam reforming performance can be achieved through choice of catalyst composition, this study also highlights the importance of considering the effect of higher hydrocarbons contained in natural gas, operating conditions (e.g., temperature, S/C feed ratio), and their effect on catalyst stability. The results of this study conclude that a Rh-supported catalyst was developed that enables very high activities and excellent catalytic stability for both the steam reforming of methane and other higher hydrocarbons contained in natural gas, and under conditions of operation that are amendable to solar thermochemical operations.https://www.mdpi.com/2073-4344/9/10/801heterogeneous catalysissyngas productionsolar thermochemicaliridium catalystrhodium catalyst