GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives

Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems...

Full description

Bibliographic Details
Main Authors: Fabio Marazzi, Luca Tagliaferri, Valeria Masiello, Francesca Moschella, Giuseppe Ferdinando Colloca, Barbara Corvari, Alejandro Martin Sanchez, Nikola Dino Capocchiano, Roberta Pastorino, Chiara Iacomini, Jacopo Lenkowicz, Carlotta Masciocchi, Stefano Patarnello, Gianluca Franceschini, Maria Antonietta Gambacorta, Riccardo Masetti, Vincenzo Valentini
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Journal of Personalized Medicine
Subjects:
Online Access:https://www.mdpi.com/2075-4426/11/2/65
id doaj-6253095dca904e1bb8657cd57de6f69b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Fabio Marazzi
Luca Tagliaferri
Valeria Masiello
Francesca Moschella
Giuseppe Ferdinando Colloca
Barbara Corvari
Alejandro Martin Sanchez
Nikola Dino Capocchiano
Roberta Pastorino
Chiara Iacomini
Jacopo Lenkowicz
Carlotta Masciocchi
Stefano Patarnello
Gianluca Franceschini
Maria Antonietta Gambacorta
Riccardo Masetti
Vincenzo Valentini
spellingShingle Fabio Marazzi
Luca Tagliaferri
Valeria Masiello
Francesca Moschella
Giuseppe Ferdinando Colloca
Barbara Corvari
Alejandro Martin Sanchez
Nikola Dino Capocchiano
Roberta Pastorino
Chiara Iacomini
Jacopo Lenkowicz
Carlotta Masciocchi
Stefano Patarnello
Gianluca Franceschini
Maria Antonietta Gambacorta
Riccardo Masetti
Vincenzo Valentini
GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
Journal of Personalized Medicine
breast cancer
DataMart
real world data
predictive model
healthcare
author_facet Fabio Marazzi
Luca Tagliaferri
Valeria Masiello
Francesca Moschella
Giuseppe Ferdinando Colloca
Barbara Corvari
Alejandro Martin Sanchez
Nikola Dino Capocchiano
Roberta Pastorino
Chiara Iacomini
Jacopo Lenkowicz
Carlotta Masciocchi
Stefano Patarnello
Gianluca Franceschini
Maria Antonietta Gambacorta
Riccardo Masetti
Vincenzo Valentini
author_sort Fabio Marazzi
title GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
title_short GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
title_full GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
title_fullStr GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
title_full_unstemmed GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
title_sort generator breast datamart—the novel breast cancer data discovery system for research and monitoring: preliminary results and future perspectives
publisher MDPI AG
series Journal of Personalized Medicine
issn 2075-4426
publishDate 2021-01-01
description Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into “Not organized, not ‘ontologized’ data”, “Organized, not ‘ontologized’ data”, and “Organized and ‘ontologized’ data”. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system.
topic breast cancer
DataMart
real world data
predictive model
healthcare
url https://www.mdpi.com/2075-4426/11/2/65
work_keys_str_mv AT fabiomarazzi generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT lucatagliaferri generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT valeriamasiello generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT francescamoschella generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT giuseppeferdinandocolloca generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT barbaracorvari generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT alejandromartinsanchez generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT nikoladinocapocchiano generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT robertapastorino generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT chiaraiacomini generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT jacopolenkowicz generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT carlottamasciocchi generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT stefanopatarnello generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT gianlucafranceschini generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT mariaantoniettagambacorta generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT riccardomasetti generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
AT vincenzovalentini generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives
_version_ 1724327469307133952
spelling doaj-6253095dca904e1bb8657cd57de6f69b2021-01-23T00:00:14ZengMDPI AGJournal of Personalized Medicine2075-44262021-01-0111656510.3390/jpm11020065GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future PerspectivesFabio Marazzi0Luca Tagliaferri1Valeria Masiello2Francesca Moschella3Giuseppe Ferdinando Colloca4Barbara Corvari5Alejandro Martin Sanchez6Nikola Dino Capocchiano7Roberta Pastorino8Chiara Iacomini9Jacopo Lenkowicz10Carlotta Masciocchi11Stefano Patarnello12Gianluca Franceschini13Maria Antonietta Gambacorta14Riccardo Masetti15Vincenzo Valentini16Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyIstituto di Radiologia, Università Cattolica del Sacro Cuore, 00186 Rome, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyIstituto di Radiologia, Università Cattolica del Sacro Cuore, 00186 Rome, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyBackground: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into “Not organized, not ‘ontologized’ data”, “Organized, not ‘ontologized’ data”, and “Organized and ‘ontologized’ data”. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system.https://www.mdpi.com/2075-4426/11/2/65breast cancerDataMartreal world datapredictive modelhealthcare