GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives
Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Journal of Personalized Medicine |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4426/11/2/65 |
id |
doaj-6253095dca904e1bb8657cd57de6f69b |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fabio Marazzi Luca Tagliaferri Valeria Masiello Francesca Moschella Giuseppe Ferdinando Colloca Barbara Corvari Alejandro Martin Sanchez Nikola Dino Capocchiano Roberta Pastorino Chiara Iacomini Jacopo Lenkowicz Carlotta Masciocchi Stefano Patarnello Gianluca Franceschini Maria Antonietta Gambacorta Riccardo Masetti Vincenzo Valentini |
spellingShingle |
Fabio Marazzi Luca Tagliaferri Valeria Masiello Francesca Moschella Giuseppe Ferdinando Colloca Barbara Corvari Alejandro Martin Sanchez Nikola Dino Capocchiano Roberta Pastorino Chiara Iacomini Jacopo Lenkowicz Carlotta Masciocchi Stefano Patarnello Gianluca Franceschini Maria Antonietta Gambacorta Riccardo Masetti Vincenzo Valentini GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives Journal of Personalized Medicine breast cancer DataMart real world data predictive model healthcare |
author_facet |
Fabio Marazzi Luca Tagliaferri Valeria Masiello Francesca Moschella Giuseppe Ferdinando Colloca Barbara Corvari Alejandro Martin Sanchez Nikola Dino Capocchiano Roberta Pastorino Chiara Iacomini Jacopo Lenkowicz Carlotta Masciocchi Stefano Patarnello Gianluca Franceschini Maria Antonietta Gambacorta Riccardo Masetti Vincenzo Valentini |
author_sort |
Fabio Marazzi |
title |
GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives |
title_short |
GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives |
title_full |
GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives |
title_fullStr |
GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives |
title_full_unstemmed |
GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives |
title_sort |
generator breast datamart—the novel breast cancer data discovery system for research and monitoring: preliminary results and future perspectives |
publisher |
MDPI AG |
series |
Journal of Personalized Medicine |
issn |
2075-4426 |
publishDate |
2021-01-01 |
description |
Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into “Not organized, not ‘ontologized’ data”, “Organized, not ‘ontologized’ data”, and “Organized and ‘ontologized’ data”. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system. |
topic |
breast cancer DataMart real world data predictive model healthcare |
url |
https://www.mdpi.com/2075-4426/11/2/65 |
work_keys_str_mv |
AT fabiomarazzi generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT lucatagliaferri generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT valeriamasiello generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT francescamoschella generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT giuseppeferdinandocolloca generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT barbaracorvari generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT alejandromartinsanchez generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT nikoladinocapocchiano generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT robertapastorino generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT chiaraiacomini generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT jacopolenkowicz generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT carlottamasciocchi generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT stefanopatarnello generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT gianlucafranceschini generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT mariaantoniettagambacorta generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT riccardomasetti generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives AT vincenzovalentini generatorbreastdatamartthenovelbreastcancerdatadiscoverysystemforresearchandmonitoringpreliminaryresultsandfutureperspectives |
_version_ |
1724327469307133952 |
spelling |
doaj-6253095dca904e1bb8657cd57de6f69b2021-01-23T00:00:14ZengMDPI AGJournal of Personalized Medicine2075-44262021-01-0111656510.3390/jpm11020065GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future PerspectivesFabio Marazzi0Luca Tagliaferri1Valeria Masiello2Francesca Moschella3Giuseppe Ferdinando Colloca4Barbara Corvari5Alejandro Martin Sanchez6Nikola Dino Capocchiano7Roberta Pastorino8Chiara Iacomini9Jacopo Lenkowicz10Carlotta Masciocchi11Stefano Patarnello12Gianluca Franceschini13Maria Antonietta Gambacorta14Riccardo Masetti15Vincenzo Valentini16Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyIstituto di Radiologia, Università Cattolica del Sacro Cuore, 00186 Rome, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyIstituto di Radiologia, Università Cattolica del Sacro Cuore, 00186 Rome, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyFondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyDipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, UOC di Chirurgia Senologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Roma, ItalyDipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00186 Rome, ItalyBackground: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into “Not organized, not ‘ontologized’ data”, “Organized, not ‘ontologized’ data”, and “Organized and ‘ontologized’ data”. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system.https://www.mdpi.com/2075-4426/11/2/65breast cancerDataMartreal world datapredictive modelhealthcare |