On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
In the present paper, a new operator denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−&l...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/9/1553 |
id |
doaj-624e90dfe874430ca7b1377890cc14ee |
---|---|
record_format |
Article |
spelling |
doaj-624e90dfe874430ca7b1377890cc14ee2021-09-26T01:30:31ZengMDPI AGSymmetry2073-89942021-08-01131553155310.3390/sym13091553On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh OperatorsAlina Alb Lupaş0Georgia Irina Oros1Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, RomaniaDepartment of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, RomaniaIn the present paper, a new operator denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> is defined by using the fractional integral of Sălăgean and Ruscheweyh operators. By means of the newly obtained operator, the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>λ</mi></mfenced></mrow></semantics></math></inline-formula> of analytic functions in the unit disc is introduced, and various properties and characteristics of this class are derived by applying techniques specific to the differential subordination concept. By studying the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula>, some interesting differential subordinations are also given.https://www.mdpi.com/2073-8994/13/9/1553differential subordinationconvex functionbest dominantdifferential operatorfractional integral |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alina Alb Lupaş Georgia Irina Oros |
spellingShingle |
Alina Alb Lupaş Georgia Irina Oros On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators Symmetry differential subordination convex function best dominant differential operator fractional integral |
author_facet |
Alina Alb Lupaş Georgia Irina Oros |
author_sort |
Alina Alb Lupaş |
title |
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators |
title_short |
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators |
title_full |
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators |
title_fullStr |
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators |
title_full_unstemmed |
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators |
title_sort |
on special differential subordinations using fractional integral of sălăgean and ruscheweyh operators |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-08-01 |
description |
In the present paper, a new operator denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> is defined by using the fractional integral of Sălăgean and Ruscheweyh operators. By means of the newly obtained operator, the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>λ</mi></mfenced></mrow></semantics></math></inline-formula> of analytic functions in the unit disc is introduced, and various properties and characteristics of this class are derived by applying techniques specific to the differential subordination concept. By studying the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula>, some interesting differential subordinations are also given. |
topic |
differential subordination convex function best dominant differential operator fractional integral |
url |
https://www.mdpi.com/2073-8994/13/9/1553 |
work_keys_str_mv |
AT alinaalblupas onspecialdifferentialsubordinationsusingfractionalintegralofsalageanandruscheweyhoperators AT georgiairinaoros onspecialdifferentialsubordinationsusingfractionalintegralofsalageanandruscheweyhoperators |
_version_ |
1716868847525429248 |