On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators

In the present paper, a new operator denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−&l...

Full description

Bibliographic Details
Main Authors: Alina Alb Lupaş, Georgia Irina Oros
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/9/1553
id doaj-624e90dfe874430ca7b1377890cc14ee
record_format Article
spelling doaj-624e90dfe874430ca7b1377890cc14ee2021-09-26T01:30:31ZengMDPI AGSymmetry2073-89942021-08-01131553155310.3390/sym13091553On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh OperatorsAlina Alb Lupaş0Georgia Irina Oros1Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, RomaniaDepartment of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, RomaniaIn the present paper, a new operator denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> is defined by using the fractional integral of Sălăgean and Ruscheweyh operators. By means of the newly obtained operator, the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>λ</mi></mfenced></mrow></semantics></math></inline-formula> of analytic functions in the unit disc is introduced, and various properties and characteristics of this class are derived by applying techniques specific to the differential subordination concept. By studying the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula>, some interesting differential subordinations are also given.https://www.mdpi.com/2073-8994/13/9/1553differential subordinationconvex functionbest dominantdifferential operatorfractional integral
collection DOAJ
language English
format Article
sources DOAJ
author Alina Alb Lupaş
Georgia Irina Oros
spellingShingle Alina Alb Lupaş
Georgia Irina Oros
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
Symmetry
differential subordination
convex function
best dominant
differential operator
fractional integral
author_facet Alina Alb Lupaş
Georgia Irina Oros
author_sort Alina Alb Lupaş
title On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
title_short On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
title_full On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
title_fullStr On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
title_full_unstemmed On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
title_sort on special differential subordinations using fractional integral of sălăgean and ruscheweyh operators
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-08-01
description In the present paper, a new operator denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> is defined by using the fractional integral of Sălăgean and Ruscheweyh operators. By means of the newly obtained operator, the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>λ</mi></mfenced></mrow></semantics></math></inline-formula> of analytic functions in the unit disc is introduced, and various properties and characteristics of this class are derived by applying techniques specific to the differential subordination concept. By studying the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>z</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msubsup><msubsup><mi>L</mi><mrow><mi>α</mi></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula>, some interesting differential subordinations are also given.
topic differential subordination
convex function
best dominant
differential operator
fractional integral
url https://www.mdpi.com/2073-8994/13/9/1553
work_keys_str_mv AT alinaalblupas onspecialdifferentialsubordinationsusingfractionalintegralofsalageanandruscheweyhoperators
AT georgiairinaoros onspecialdifferentialsubordinationsusingfractionalintegralofsalageanandruscheweyhoperators
_version_ 1716868847525429248