Summary: | A great deal of modern catalytic research orients around the architecturally designed bio-engineered catalysts. In this context, we have adorned Cu NPs over pectin encapsulated Fe3O4 NPs. The Cu NPs were generated following a biogenic green pathway over the core-shell type nanocomposite promoted by Mentha Pulegium flower extract as natural reducing/stabilizing agent. The as-synthesized nanocomposite was meticulously characterized by using a wide range of physicochemical techniques like FT-IR, FESEM, TEM, EDX, elemental mapping, VSM, XRD and ICP-OES analysis. The catalyst was explored in the synthesis of diversely substituted 1H-tetrazoles via three component coupling reaction (MCR), under solvent-less conditions affording high to excellent yields. Heterogeneity of the catalyst was measured through its excellent reusability, hot-filtration test and leaching study. The nanocomposite was also explored biologically in the anticancer assays. In the cytotoxicity and anti-human colon carcinoma studies, the nanocomposite was treated to colorectal adenocarcinoma (HT-29) cell line following MTT assay. The cell viability of malignant colon cell line reduced dose-dependently in the presence of Cu/Pectin@Fe3O4 nanocomposite. IC50 values of the nanocomposite were observed to be 1450.84 μg/mL against HT-29 cell line. The outstanding results showed by the developed nanocomposite, could be highly promising in cancer management in near future.
|