High Voltage Ride through Control of PMSG-Based Wind Turbine Generation System Using Supercapacitor
Regarding PMSG-based wind turbine generation system, this paper proposes a supercapacitor energy storage unit (SCESU) which is connected in parallel with the DC-link of the back-to-back converter to enhance its high voltage ride through performance. The analysis of the operation and control for the...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Active and Passive Electronic Components |
Online Access: | http://dx.doi.org/10.1155/2019/3489252 |
Summary: | Regarding PMSG-based wind turbine generation system, this paper proposes a supercapacitor energy storage unit (SCESU) which is connected in parallel with the DC-link of the back-to-back converter to enhance its high voltage ride through performance. The analysis of the operation and control for the grid-side converter and SCESU are conducted. Based on real time digital simulators (RTDS), a model and a Hardware-in-the-Loop (HiL) platform of PMSG-based wind turbine with SCESU is developed, and the simulation results show that the SCESU absorbs the imbalanced energy and the grid-side converter absorbs inductive reactive power during the period of voltage swell and verify the correctness and feasibility of the high voltage ride through control strategy. |
---|---|
ISSN: | 0882-7516 1563-5031 |