MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics

In modular robotics modules can be reconfigured to change the morphology of the robot, making it able to adapt to specific tasks. However, optimizing both the body and control of such robots is a difficult challenge due to the intricate relationship between fine-tuning control and morphological chan...

Full description

Bibliographic Details
Main Authors: Jørgen Nordmoen, Frank Veenstra, Kai Olav Ellefsen, Kyrre Glette
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-04-01
Series:Frontiers in Robotics and AI
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frobt.2021.639173/full
id doaj-6201812a3a604baba9877e46021c097e
record_format Article
spelling doaj-6201812a3a604baba9877e46021c097e2021-04-28T06:00:18ZengFrontiers Media S.A.Frontiers in Robotics and AI2296-91442021-04-01810.3389/frobt.2021.639173639173MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular RoboticsJørgen Nordmoen0Frank Veenstra1Kai Olav Ellefsen2Kyrre Glette3Kyrre Glette4Department of Informatics, University of Oslo, Oslo, NorwayDepartment of Informatics, University of Oslo, Oslo, NorwayDepartment of Informatics, University of Oslo, Oslo, NorwayDepartment of Informatics, University of Oslo, Oslo, NorwayRITMO, University of Oslo, Oslo, NorwayIn modular robotics modules can be reconfigured to change the morphology of the robot, making it able to adapt to specific tasks. However, optimizing both the body and control of such robots is a difficult challenge due to the intricate relationship between fine-tuning control and morphological changes that can invalidate such optimizations. These challenges can trap many optimization algorithms in local optima, halting progress towards better solutions. To solve this challenge we compare three different Evolutionary Algorithms on their capacity to optimize high performing and diverse morphologies and controllers in modular robotics. We compare two objective-based search algorithms, with and without a diversity promoting objective, with a Quality Diversity algorithm—MAP-Elites. The results show that MAP-Elites is capable of evolving the highest performing solutions in addition to generating the largest morphological diversity. Further, MAP-Elites is superior at regaining performance when transferring the population to new and more difficult environments. By analyzing genealogical ancestry we show that MAP-Elites produces more diverse and higher performing stepping stones than the two other objective-based search algorithms. The experiments transitioning the populations to new environments show the utility of morphological diversity, while the analysis of stepping stones show a strong correlation between diversity of ancestry and maximum performance on the locomotion task. Together, these results demonstrate the suitability of MAP-elites for the challenging task of morphology-control search for modular robots, and shed light on the algorithm’s capability of generating stepping stones for reaching high-performing solutions.https://www.frontiersin.org/articles/10.3389/frobt.2021.639173/fullevolutionary roboticsmodular roboticsmorphology evolutionstepping stonesdiversitymultiple environments
collection DOAJ
language English
format Article
sources DOAJ
author Jørgen Nordmoen
Frank Veenstra
Kai Olav Ellefsen
Kyrre Glette
Kyrre Glette
spellingShingle Jørgen Nordmoen
Frank Veenstra
Kai Olav Ellefsen
Kyrre Glette
Kyrre Glette
MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
Frontiers in Robotics and AI
evolutionary robotics
modular robotics
morphology evolution
stepping stones
diversity
multiple environments
author_facet Jørgen Nordmoen
Frank Veenstra
Kai Olav Ellefsen
Kyrre Glette
Kyrre Glette
author_sort Jørgen Nordmoen
title MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
title_short MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
title_full MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
title_fullStr MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
title_full_unstemmed MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics
title_sort map-elites enables powerful stepping stones and diversity for modular robotics
publisher Frontiers Media S.A.
series Frontiers in Robotics and AI
issn 2296-9144
publishDate 2021-04-01
description In modular robotics modules can be reconfigured to change the morphology of the robot, making it able to adapt to specific tasks. However, optimizing both the body and control of such robots is a difficult challenge due to the intricate relationship between fine-tuning control and morphological changes that can invalidate such optimizations. These challenges can trap many optimization algorithms in local optima, halting progress towards better solutions. To solve this challenge we compare three different Evolutionary Algorithms on their capacity to optimize high performing and diverse morphologies and controllers in modular robotics. We compare two objective-based search algorithms, with and without a diversity promoting objective, with a Quality Diversity algorithm—MAP-Elites. The results show that MAP-Elites is capable of evolving the highest performing solutions in addition to generating the largest morphological diversity. Further, MAP-Elites is superior at regaining performance when transferring the population to new and more difficult environments. By analyzing genealogical ancestry we show that MAP-Elites produces more diverse and higher performing stepping stones than the two other objective-based search algorithms. The experiments transitioning the populations to new environments show the utility of morphological diversity, while the analysis of stepping stones show a strong correlation between diversity of ancestry and maximum performance on the locomotion task. Together, these results demonstrate the suitability of MAP-elites for the challenging task of morphology-control search for modular robots, and shed light on the algorithm’s capability of generating stepping stones for reaching high-performing solutions.
topic evolutionary robotics
modular robotics
morphology evolution
stepping stones
diversity
multiple environments
url https://www.frontiersin.org/articles/10.3389/frobt.2021.639173/full
work_keys_str_mv AT jørgennordmoen mapelitesenablespowerfulsteppingstonesanddiversityformodularrobotics
AT frankveenstra mapelitesenablespowerfulsteppingstonesanddiversityformodularrobotics
AT kaiolavellefsen mapelitesenablespowerfulsteppingstonesanddiversityformodularrobotics
AT kyrreglette mapelitesenablespowerfulsteppingstonesanddiversityformodularrobotics
AT kyrreglette mapelitesenablespowerfulsteppingstonesanddiversityformodularrobotics
_version_ 1721504584409546752