Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in Drosophila

Abstract Background We have previously showed that the carotenoid fucoxanthin can increase the lifespan in Drosophila melanogaster and Caenorhabditis elegans. However, the molecular mechanisms of the geroprotective effect of fucoxanthin have not been studied so far. Results Here, we studied the effe...

Full description

Bibliographic Details
Main Authors: Alexey Moskalev, Mikhail Shaposhnikov, Nadezhda Zemskaya, Alexey Belyi, Eugenia Dobrovolskaya, Anna Patova, Zulfiya Guvatova, Elena Lukyanova, Anastasiya Snezhkina, Anna Kudryavtseva
Format: Article
Language:English
Published: BMC 2018-02-01
Series:BMC Genomics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12864-018-4471-x
Description
Summary:Abstract Background We have previously showed that the carotenoid fucoxanthin can increase the lifespan in Drosophila melanogaster and Caenorhabditis elegans. However, the molecular mechanisms of the geroprotective effect of fucoxanthin have not been studied so far. Results Here, we studied the effects of fucoxanthin on the Drosophila aging process at the molecular and the whole organism levels. At the organismal level, fucoxanthin increased the median lifespan and had a positive effect on fecundity, fertility, intestinal barrier function, and nighttime sleep. Transcriptome analysis revealed 57 differentially expressed genes involved in 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Among the most represented molecular pathways induced by fucoxanthin, a significant portion is related to longevity, including MAPK, mTOR, Wnt, Notch, and Hippo signaling pathways, autophagy, translation, glycolysis, oxidative phosphorylation, apoptosis, immune response, neurogenesis, sleep, and response to DNA damage. Conclusions Life-extending effects of fucoxanthin are associated with differential expression of longevity-associated genes.
ISSN:1471-2164