Summary: | We introduce new necessary conditions for the existence and uniqueness of stationary weak solutions and the existence of the weak solutions for the evolution problem in the system arising from the modeling of the bioconvective flow problem. Our analysis is based on the application of the Galerkin method, and the system considered consists of three equations: the nonlinear Navier–Stokes equation, the incompressibility equation, and a parabolic conservation equation, where the unknowns are the fluid velocity, the hydrostatic pressure, and the concentration of microorganisms. The boundary conditions are homogeneous and of zero-flux-type, for the cases of fluid velocity and microorganism concentration, respectively.
|