Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams
Beam deflection experiments were used to systematically examine size effects on the low cyclic fatigue (LCF) deformation behaviour of micro-sized bending beams of copper (Cu) single crystals oriented for single slip, critical and coplanar double slip. We present cyclic hardening curves and fatigue s...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/3/741 |
id |
doaj-61c7247724e24b16bfa37fe9aa7cce7e |
---|---|
record_format |
Article |
spelling |
doaj-61c7247724e24b16bfa37fe9aa7cce7e2020-11-25T02:16:09ZengMDPI AGMaterials1996-19442020-02-0113374110.3390/ma13030741ma13030741Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline MicrobeamsJorge Rafael Velayarce0Christian Motz1Institute of Material Science and Methods, Saarland University, 66123 Saarbrücken, GermanyInstitute of Material Science and Methods, Saarland University, 66123 Saarbrücken, GermanyBeam deflection experiments were used to systematically examine size effects on the low cyclic fatigue (LCF) deformation behaviour of micro-sized bending beams of copper (Cu) single crystals oriented for single slip, critical and coplanar double slip. We present cyclic hardening curves and fatigue surface roughness, as well as dislocations structures of the micro-sized beams with sizes between 1 and 15 µm. A clear crystal orientation and size effect on the cyclic hardening curves, surface roughness, and the dislocation microstructures were observed. Based on the experimental results, the fatigue damage in single slip orientations clearly decreased with decreasing the sample size, however, below a critical size regime, the surface damage suddenly increases. Additionally, samples with sizes larger than 5 µm clearly revealed, besides PSBs-like structures, the emergence of kink bands leading to larger surface roughness in comparison to the smaller ones. Fatigue surface damages in microcrystals oriented for critical double slip became more prevalent compared to single slip orientations. Quantitatively, the correlation of the fatigue surface damage was also demonstrated with the formation of PSBs-like structures.https://www.mdpi.com/1996-1944/13/3/741fatiguepsbs-like structureskink bandsdislocation dipole |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jorge Rafael Velayarce Christian Motz |
spellingShingle |
Jorge Rafael Velayarce Christian Motz Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams Materials fatigue psbs-like structures kink bands dislocation dipole |
author_facet |
Jorge Rafael Velayarce Christian Motz |
author_sort |
Jorge Rafael Velayarce |
title |
Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams |
title_short |
Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams |
title_full |
Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams |
title_fullStr |
Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams |
title_full_unstemmed |
Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams |
title_sort |
effect of sample size and crystal orientation on the fatigue behaviour of single crystalline microbeams |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2020-02-01 |
description |
Beam deflection experiments were used to systematically examine size effects on the low cyclic fatigue (LCF) deformation behaviour of micro-sized bending beams of copper (Cu) single crystals oriented for single slip, critical and coplanar double slip. We present cyclic hardening curves and fatigue surface roughness, as well as dislocations structures of the micro-sized beams with sizes between 1 and 15 µm. A clear crystal orientation and size effect on the cyclic hardening curves, surface roughness, and the dislocation microstructures were observed. Based on the experimental results, the fatigue damage in single slip orientations clearly decreased with decreasing the sample size, however, below a critical size regime, the surface damage suddenly increases. Additionally, samples with sizes larger than 5 µm clearly revealed, besides PSBs-like structures, the emergence of kink bands leading to larger surface roughness in comparison to the smaller ones. Fatigue surface damages in microcrystals oriented for critical double slip became more prevalent compared to single slip orientations. Quantitatively, the correlation of the fatigue surface damage was also demonstrated with the formation of PSBs-like structures. |
topic |
fatigue psbs-like structures kink bands dislocation dipole |
url |
https://www.mdpi.com/1996-1944/13/3/741 |
work_keys_str_mv |
AT jorgerafaelvelayarce effectofsamplesizeandcrystalorientationonthefatiguebehaviourofsinglecrystallinemicrobeams AT christianmotz effectofsamplesizeandcrystalorientationonthefatiguebehaviourofsinglecrystallinemicrobeams |
_version_ |
1724892440205197312 |