Summary: | Abstract General physical background of famous Peres–Horodecki positive partial transpose (PH- or PPT-) separability criterion is revealed. Especially, the physical sense of partial transpose operation is shown to be equivalent to what one could call as the “local causality reversal” (LCR-) procedure for all separable quantum systems or to the uncertainty in a global time arrow direction in all entangled cases. Using these universal causal considerations brand new general relations for the heuristic causal separability criterion have been proposed for arbitrary $$ D^{N} \times D^{N}$$ D N × D N density matrices acting in $$ {\mathcal {H}}_{D}^{\otimes N} $$ H D ⊗ N Hilbert spaces which describe the ensembles of N quantum systems of D eigenstates each. Resulting general formulas have been then analyzed for the widest special type of one-parametric density matrices of arbitrary dimensionality, which model a number of equivalent quantum subsystems being equally connected (EC-) with each other to arbitrary degree by means of a single entanglement parameter p. In particular, for the family of such EC-density matrices it has been found that there exists a number of N- and D-dependent separability (or entanglement) thresholds $$ p_{th}(N,D) $$ p th ( N , D ) for the values of the corresponded entanglement parameter p, which in the simplest case of a qubit-pair density matrix in $$ {\mathcal {H}}_{2} \otimes {\mathcal {H}}_{2} $$ H 2 ⊗ H 2 Hilbert space are shown to reduce to well-known results obtained earlier independently by Peres (Phys Rev Lett 77:1413–1415, 1996) and Horodecki (Phys Lett A 223(1–2):1–8, 1996). As the result, a number of remarkable features of the entanglement thresholds for EC-density matrices has been described for the first time. All novel results being obtained for the family of arbitrary EC-density matrices are shown to be applicable to a wide range of both interacting and non-interacting (at the moment of measurement) multi-partite quantum systems, such as arrays of qubits, spin chains, ensembles of quantum oscillators, strongly correlated quantum many-body systems with the possibility of many-body localization, etc.
|