Holographic entanglement entropy in metal/superconductor phase transition with Born–Infeld electrodynamics

We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the Born–Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the properties of the phase transition. For the operator 〈O−〉, we find that the entanglement...

Full description

Bibliographic Details
Main Authors: Weiping Yao, Jiliang Jing
Format: Article
Language:English
Published: Elsevier 2014-12-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321314003058
Description
Summary:We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the Born–Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the properties of the phase transition. For the operator 〈O−〉, we find that the entanglement entropy decreases (or increases) with the increase of the Born–Infeld parameter b in the metal (or superconducting) phase. For the operator 〈O+〉, we observe that, with the increase of the Born–Infeld parameter, the entanglement entropy in the metal phase decreases monotonously but the entropy in the superconducting phase first increases and forms a peak at some threshold bT, then decreases continuously. Moreover, the value of bT becomes smaller as the width of the subsystem A decreases.
ISSN:0550-3213
1873-1562