Holographic entanglement entropy in metal/superconductor phase transition with Born–Infeld electrodynamics
We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the Born–Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the properties of the phase transition. For the operator 〈O−〉, we find that the entanglement...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2014-12-01
|
Series: | Nuclear Physics B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0550321314003058 |
Summary: | We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the Born–Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the properties of the phase transition. For the operator 〈O−〉, we find that the entanglement entropy decreases (or increases) with the increase of the Born–Infeld parameter b in the metal (or superconducting) phase. For the operator 〈O+〉, we observe that, with the increase of the Born–Infeld parameter, the entanglement entropy in the metal phase decreases monotonously but the entropy in the superconducting phase first increases and forms a peak at some threshold bT, then decreases continuously. Moreover, the value of bT becomes smaller as the width of the subsystem A decreases. |
---|---|
ISSN: | 0550-3213 1873-1562 |