Route Planning Through Distributed Computing by Road Side Units

Cities are embracing data-intensive applications to maximize their constrained transportation networks. Platforms such as Google offer route planning services to mitigate the effect of traffic congestion. These use remote servers that require an Internet connection, which exposes data to increased r...

Full description

Bibliographic Details
Main Authors: Jose Paolo V. Talusan, Michael Wilbur, Abhishek Dubey, Keiichi Yasumoto
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9206024/
Description
Summary:Cities are embracing data-intensive applications to maximize their constrained transportation networks. Platforms such as Google offer route planning services to mitigate the effect of traffic congestion. These use remote servers that require an Internet connection, which exposes data to increased risk of network failures and latency issues. Edge computing, an alternative to centralized architectures, offers computational power at the edge that could be used for similar services. Road side units (RSU), Internet of Things (IoT) devices within a city, offer an opportunity to offload computation to the edge. To provide an environment for processing on RSUs, we introduce RSU-Edge, a distributed edge computing system for RSUs. We design and develop a decentralized route planning service over RSU-Edge. In the service, the city is divided into grids and assigned an RSU. Users send trip queries to the service and obtain routes. For maximum accuracy, tasks must be allocated to optimal RSUs. However, this overloads RSUs, increasing delay. To reduce delays, tasks may be reallocated from overloaded RSUs to its neighbors. The distance between the optimal and actual allocation causes accuracy loss due to stale data. The problem is identifying the most efficient allocation of tasks such that response constraints are met while maintaining acceptable accuracy. We created the system and present an analysis of a case study in Nashville, Tennessee that shows the effect of our algorithm on route accuracy and query response, given varying neighbor levels. We find that our system can respond to 1000 queries up to 57.17% faster, with only a model accuracy loss of 5.57% to 7.25% compared to using only optimal grid allocation.
ISSN:2169-3536