The Decomposition of Global Conformal Invariants: Some Technical Proofs. I
This paper forms part of a larger work where we prove a conjecture of Deser and Schwimmer regarding the algebraic structure of ''global conformal invariants''; these are defined to be conformally invariant integrals of geometric scalars. The conjecture asserts that the integrand...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2011-02-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2011.019 |
Summary: | This paper forms part of a larger work where we prove a conjecture of Deser and Schwimmer regarding the algebraic structure of ''global conformal invariants''; these are defined to be conformally invariant integrals of geometric scalars. The conjecture asserts that the integrand of any such integral can be expressed as a linear combination of a local conformal invariant, a divergence and of the Chern-Gauss-Bonnet integrand. |
---|---|
ISSN: | 1815-0659 |