NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane

Dry reforming of methane can be used for suppressing the rapid growth of greenhouse gas emissions. However, its practical implementation generally requires high temperatures. In this study, we report an optimal catalyst for low-temperature dry reforming of methane with high carbon coking resistance...

Full description

Bibliographic Details
Main Authors: Syota Imada, Xiaobo Peng, Zexing Cai, Abdillah Sani Bin Mohd Najib, Masahiro Miyauchi, Hideki Abe, Takeshi Fujita
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/9/2044
Description
Summary:Dry reforming of methane can be used for suppressing the rapid growth of greenhouse gas emissions. However, its practical implementation generally requires high temperatures. In this study, we report an optimal catalyst for low-temperature dry reforming of methane with high carbon coking resistance synthesized from NiYAl alloy. A facile two-step process consisting of preferential oxidation and leaching was utilized to produce structurally robust nanoporous Ni metal and Y oxides from NiYAl<sub>4</sub>. The catalyst exhibited an optimal carbon balance (0.96) close to the ideal value of 1.0, indicating the optimized dry reforming pathway. This work proposes a facile route of the structural control of active metal/oxide sites for realizing highly active catalysts with long-term durability.
ISSN:1996-1944