A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays
Coordination optimization of directional overcurrent relays (DOCRs) is an important part of an efficient distribution system. This optimization problem involves obtaining the time dial setting (TDS) and pickup current (Ip) values of each DOCR. The optimal results should have the shortest primary rel...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2012/456047 |
id |
doaj-61660f5b21b44dc8b7962cbc390052ae |
---|---|
record_format |
Article |
spelling |
doaj-61660f5b21b44dc8b7962cbc390052ae2020-11-24T22:41:33ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472012-01-01201210.1155/2012/456047456047A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent RelaysAn Liu0Ming-Ta Yang1Department of Computer Science and Information Engineering, St. John's University, No. 499, Section 4, Tam King Road, Tamsui District, New Taipei City 25135, TaiwanDepartment of Electrical Engineering, St. John's University, No. 499, Section 4, Tam King Road, Tamsui District, New Taipei City 25135, TaiwanCoordination optimization of directional overcurrent relays (DOCRs) is an important part of an efficient distribution system. This optimization problem involves obtaining the time dial setting (TDS) and pickup current (Ip) values of each DOCR. The optimal results should have the shortest primary relay operating time for all fault lines. Recently, the particle swarm optimization (PSO) algorithm has been considered an effective tool for linear/nonlinear optimization problems with application in the protection and coordination of power systems. With a limited runtime period, the conventional PSO considers the optimal solution as the final solution, and an early convergence of PSO results in decreased overall performance and an increase in the risk of mistaking local optima for global optima. Therefore, this study proposes a new hybrid Nelder-Mead simplex search method and particle swarm optimization (proposed NM-PSO) algorithm to solve the DOCR coordination optimization problem. PSO is the main optimizer, and the Nelder-Mead simplex search method is used to improve the efficiency of PSO due to its potential for rapid convergence. To validate the proposal, this study compared the performance of the proposed algorithm with that of PSO and original NM-PSO. The findings demonstrate the outstanding performance of the proposed NM-PSO in terms of computation speed, rate of convergence, and feasibility.http://dx.doi.org/10.1155/2012/456047 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
An Liu Ming-Ta Yang |
spellingShingle |
An Liu Ming-Ta Yang A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays Mathematical Problems in Engineering |
author_facet |
An Liu Ming-Ta Yang |
author_sort |
An Liu |
title |
A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays |
title_short |
A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays |
title_full |
A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays |
title_fullStr |
A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays |
title_full_unstemmed |
A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays |
title_sort |
new hybrid nelder-mead particle swarm optimization for coordination optimization of directional overcurrent relays |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2012-01-01 |
description |
Coordination optimization of directional overcurrent relays (DOCRs) is an important part of an efficient distribution system. This optimization problem involves obtaining the time dial setting (TDS) and pickup current (Ip) values of each DOCR. The optimal results should have the shortest primary relay operating time for all fault lines. Recently, the particle swarm optimization (PSO) algorithm has been considered an effective tool for linear/nonlinear optimization problems with application in the protection and coordination of power systems. With a limited runtime period, the conventional PSO considers the optimal solution as the final solution, and an early convergence of PSO results in decreased overall performance and an increase in the risk of mistaking local optima for global optima. Therefore, this study proposes a new hybrid Nelder-Mead simplex search method and particle swarm optimization (proposed NM-PSO) algorithm to solve the DOCR coordination optimization problem. PSO is the main optimizer, and the Nelder-Mead simplex search method is used to improve the efficiency of PSO due to its potential for rapid convergence. To validate the proposal, this study compared the performance of the proposed algorithm with that of PSO and original NM-PSO. The findings demonstrate the outstanding performance of the proposed NM-PSO in terms of computation speed, rate of convergence, and feasibility. |
url |
http://dx.doi.org/10.1155/2012/456047 |
work_keys_str_mv |
AT anliu anewhybridneldermeadparticleswarmoptimizationforcoordinationoptimizationofdirectionalovercurrentrelays AT mingtayang anewhybridneldermeadparticleswarmoptimizationforcoordinationoptimizationofdirectionalovercurrentrelays AT anliu newhybridneldermeadparticleswarmoptimizationforcoordinationoptimizationofdirectionalovercurrentrelays AT mingtayang newhybridneldermeadparticleswarmoptimizationforcoordinationoptimizationofdirectionalovercurrentrelays |
_version_ |
1725701990278758400 |