Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa.
Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All spli...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4226509?pdf=render |
id |
doaj-6140c1431828454bb6ad7def5e7a7b1c |
---|---|
record_format |
Article |
spelling |
doaj-6140c1431828454bb6ad7def5e7a7b1c2020-11-25T01:26:18ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01911e11175410.1371/journal.pone.0111754Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa.Bastian LinderAnja HirmerAndreas GalKlaus RütherHanno Jörn BolzChristoph WinklerBernhard LaggerbauerUtz FischerPre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina.http://europepmc.org/articles/PMC4226509?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bastian Linder Anja Hirmer Andreas Gal Klaus Rüther Hanno Jörn Bolz Christoph Winkler Bernhard Laggerbauer Utz Fischer |
spellingShingle |
Bastian Linder Anja Hirmer Andreas Gal Klaus Rüther Hanno Jörn Bolz Christoph Winkler Bernhard Laggerbauer Utz Fischer Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS ONE |
author_facet |
Bastian Linder Anja Hirmer Andreas Gal Klaus Rüther Hanno Jörn Bolz Christoph Winkler Bernhard Laggerbauer Utz Fischer |
author_sort |
Bastian Linder |
title |
Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. |
title_short |
Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. |
title_full |
Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. |
title_fullStr |
Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. |
title_full_unstemmed |
Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. |
title_sort |
identification of a prpf4 loss-of-function variant that abrogates u4/u6.u5 tri-snrnp integration and is associated with retinitis pigmentosa. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina. |
url |
http://europepmc.org/articles/PMC4226509?pdf=render |
work_keys_str_mv |
AT bastianlinder identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT anjahirmer identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT andreasgal identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT klausruther identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT hannojornbolz identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT christophwinkler identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT bernhardlaggerbauer identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa AT utzfischer identificationofaprpf4lossoffunctionvariantthatabrogatesu4u6u5trisnrnpintegrationandisassociatedwithretinitispigmentosa |
_version_ |
1725109874899025920 |