The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future
In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optim...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Medicina |
Subjects: | |
Online Access: | https://www.mdpi.com/1010-660X/56/7/364 |
id |
doaj-6132e6a4235e44418bf6edb1295ce5dc |
---|---|
record_format |
Article |
spelling |
doaj-6132e6a4235e44418bf6edb1295ce5dc2020-11-25T02:49:17ZengMDPI AGMedicina1010-660X2020-07-015636436410.3390/medicina56070364The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and FutureDaniela Cornelia Lazăr0Mihaela Flavia Avram1Alexandra Corina Faur2Adrian Goldiş3Ioan Romoşan4Sorina Tăban5Mărioara Cornianu6Department V of Internal Medicine I, Discipline of Internal Medicine IV, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaDepartment of Surgery X, 1st Surgery Discipline, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaDepartment I, Discipline of Anatomy and Embriology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaDepartment VII of Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaDepartment V of Internal Medicine I, Discipline of Internal Medicine IV, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaDepartment II of Microscopic Morphology, Discipline of Pathology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaDepartment II of Microscopic Morphology, Discipline of Pathology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. no. 2, 300041 Timișoara, RomaniaIn the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett’s esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor–computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.https://www.mdpi.com/1010-660X/56/7/364artificial intelligencecomputer-assisted diagnosisendoscopyBarrett’s esophagusesophageal cancer |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Daniela Cornelia Lazăr Mihaela Flavia Avram Alexandra Corina Faur Adrian Goldiş Ioan Romoşan Sorina Tăban Mărioara Cornianu |
spellingShingle |
Daniela Cornelia Lazăr Mihaela Flavia Avram Alexandra Corina Faur Adrian Goldiş Ioan Romoşan Sorina Tăban Mărioara Cornianu The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future Medicina artificial intelligence computer-assisted diagnosis endoscopy Barrett’s esophagus esophageal cancer |
author_facet |
Daniela Cornelia Lazăr Mihaela Flavia Avram Alexandra Corina Faur Adrian Goldiş Ioan Romoşan Sorina Tăban Mărioara Cornianu |
author_sort |
Daniela Cornelia Lazăr |
title |
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future |
title_short |
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future |
title_full |
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future |
title_fullStr |
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future |
title_full_unstemmed |
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future |
title_sort |
impact of artificial intelligence in the endoscopic assessment of premalignant and malignant esophageal lesions: present and future |
publisher |
MDPI AG |
series |
Medicina |
issn |
1010-660X |
publishDate |
2020-07-01 |
description |
In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett’s esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor–computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians. |
topic |
artificial intelligence computer-assisted diagnosis endoscopy Barrett’s esophagus esophageal cancer |
url |
https://www.mdpi.com/1010-660X/56/7/364 |
work_keys_str_mv |
AT danielacornelialazar theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT mihaelaflaviaavram theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT alexandracorinafaur theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT adriangoldis theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT ioanromosan theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT sorinataban theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT marioaracornianu theimpactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT danielacornelialazar impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT mihaelaflaviaavram impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT alexandracorinafaur impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT adriangoldis impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT ioanromosan impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT sorinataban impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture AT marioaracornianu impactofartificialintelligenceintheendoscopicassessmentofpremalignantandmalignantesophageallesionspresentandfuture |
_version_ |
1724744474074021888 |