Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
In this paper, we introduce the use of the multilevel fast multipole algorithm (MLFMA) in synergy with a multilevel nonoverlapping additive Schwarz domain decomposition (DD) preconditioner for the solution of large arrays of nanoparticles presenting multiscale and multiphysics features. The judiciou...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2016-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7582442/ |
id |
doaj-610efde8fa88478b81cd491afe917305 |
---|---|
record_format |
Article |
spelling |
doaj-610efde8fa88478b81cd491afe9173052021-03-29T17:38:08ZengIEEEIEEE Photonics Journal1943-06552016-01-018511410.1109/JPHOT.2016.26148957582442Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With RepetitionsDiego M. Solis0Fernando Obelleiro1Jose M. Taboada2Departamento de Teoría do Sinal e Comunicacións, Universidade de Vigo, Vigo, SpainDepartamento de Teoría do Sinal e Comunicacións, Universidade de Vigo, Vigo, SpainDepartamento de Tecnología de Computadores y Comunicaciones, Universidad de Extremadura, Cáceres, SpainIn this paper, we introduce the use of the multilevel fast multipole algorithm (MLFMA) in synergy with a multilevel nonoverlapping additive Schwarz domain decomposition (DD) preconditioner for the solution of large arrays of nanoparticles presenting multiscale and multiphysics features. The judicious selection of subdomains allows for the isolation of the different scale/physics subproblems, yielding an efficient and effective preconditioner for the surface integral equation matrix system. Furthermore, the MLFMA-method of moments is employed to take advantage of the repetition pattern inherent to these kinds of structures. Numerical experiments solving real-life plasmonic biosensors built up from complicated particle assemblies reveal a great improvement of convergence, testifying to the robustness and versatility of the DD approach.https://ieeexplore.ieee.org/document/7582442/Domain decompositionintegral equationsnanoparticle assembliesRaman spectroscopyplasmonics. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Diego M. Solis Fernando Obelleiro Jose M. Taboada |
spellingShingle |
Diego M. Solis Fernando Obelleiro Jose M. Taboada Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions IEEE Photonics Journal Domain decomposition integral equations nanoparticle assemblies Raman spectroscopy plasmonics. |
author_facet |
Diego M. Solis Fernando Obelleiro Jose M. Taboada |
author_sort |
Diego M. Solis |
title |
Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions |
title_short |
Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions |
title_full |
Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions |
title_fullStr |
Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions |
title_full_unstemmed |
Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions |
title_sort |
surface integral equation-domain decomposition scheme for solving multiscale nanoparticle assemblies with repetitions |
publisher |
IEEE |
series |
IEEE Photonics Journal |
issn |
1943-0655 |
publishDate |
2016-01-01 |
description |
In this paper, we introduce the use of the multilevel fast multipole algorithm (MLFMA) in synergy with a multilevel nonoverlapping additive Schwarz domain decomposition (DD) preconditioner for the solution of large arrays of nanoparticles presenting multiscale and multiphysics features. The judicious selection of subdomains allows for the isolation of the different scale/physics subproblems, yielding an efficient and effective preconditioner for the surface integral equation matrix system. Furthermore, the MLFMA-method of moments is employed to take advantage of the repetition pattern inherent to these kinds of structures. Numerical experiments solving real-life plasmonic biosensors built up from complicated particle assemblies reveal a great improvement of convergence, testifying to the robustness and versatility of the DD approach. |
topic |
Domain decomposition integral equations nanoparticle assemblies Raman spectroscopy plasmonics. |
url |
https://ieeexplore.ieee.org/document/7582442/ |
work_keys_str_mv |
AT diegomsolis surfaceintegralequationdomaindecompositionschemeforsolvingmultiscalenanoparticleassemblieswithrepetitions AT fernandoobelleiro surfaceintegralequationdomaindecompositionschemeforsolvingmultiscalenanoparticleassemblieswithrepetitions AT josemtaboada surfaceintegralequationdomaindecompositionschemeforsolvingmultiscalenanoparticleassemblieswithrepetitions |
_version_ |
1724197498041401344 |