Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions

In this paper, we introduce the use of the multilevel fast multipole algorithm (MLFMA) in synergy with a multilevel nonoverlapping additive Schwarz domain decomposition (DD) preconditioner for the solution of large arrays of nanoparticles presenting multiscale and multiphysics features. The judiciou...

Full description

Bibliographic Details
Main Authors: Diego M. Solis, Fernando Obelleiro, Jose M. Taboada
Format: Article
Language:English
Published: IEEE 2016-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7582442/
id doaj-610efde8fa88478b81cd491afe917305
record_format Article
spelling doaj-610efde8fa88478b81cd491afe9173052021-03-29T17:38:08ZengIEEEIEEE Photonics Journal1943-06552016-01-018511410.1109/JPHOT.2016.26148957582442Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With RepetitionsDiego M. Solis0Fernando Obelleiro1Jose M. Taboada2Departamento de Teoría do Sinal e Comunicacións, Universidade de Vigo, Vigo, SpainDepartamento de Teoría do Sinal e Comunicacións, Universidade de Vigo, Vigo, SpainDepartamento de Tecnología de Computadores y Comunicaciones, Universidad de Extremadura, Cáceres, SpainIn this paper, we introduce the use of the multilevel fast multipole algorithm (MLFMA) in synergy with a multilevel nonoverlapping additive Schwarz domain decomposition (DD) preconditioner for the solution of large arrays of nanoparticles presenting multiscale and multiphysics features. The judicious selection of subdomains allows for the isolation of the different scale/physics subproblems, yielding an efficient and effective preconditioner for the surface integral equation matrix system. Furthermore, the MLFMA-method of moments is employed to take advantage of the repetition pattern inherent to these kinds of structures. Numerical experiments solving real-life plasmonic biosensors built up from complicated particle assemblies reveal a great improvement of convergence, testifying to the robustness and versatility of the DD approach.https://ieeexplore.ieee.org/document/7582442/Domain decompositionintegral equationsnanoparticle assembliesRaman spectroscopyplasmonics.
collection DOAJ
language English
format Article
sources DOAJ
author Diego M. Solis
Fernando Obelleiro
Jose M. Taboada
spellingShingle Diego M. Solis
Fernando Obelleiro
Jose M. Taboada
Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
IEEE Photonics Journal
Domain decomposition
integral equations
nanoparticle assemblies
Raman spectroscopy
plasmonics.
author_facet Diego M. Solis
Fernando Obelleiro
Jose M. Taboada
author_sort Diego M. Solis
title Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
title_short Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
title_full Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
title_fullStr Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
title_full_unstemmed Surface Integral Equation-Domain Decomposition Scheme for Solving Multiscale Nanoparticle Assemblies With Repetitions
title_sort surface integral equation-domain decomposition scheme for solving multiscale nanoparticle assemblies with repetitions
publisher IEEE
series IEEE Photonics Journal
issn 1943-0655
publishDate 2016-01-01
description In this paper, we introduce the use of the multilevel fast multipole algorithm (MLFMA) in synergy with a multilevel nonoverlapping additive Schwarz domain decomposition (DD) preconditioner for the solution of large arrays of nanoparticles presenting multiscale and multiphysics features. The judicious selection of subdomains allows for the isolation of the different scale/physics subproblems, yielding an efficient and effective preconditioner for the surface integral equation matrix system. Furthermore, the MLFMA-method of moments is employed to take advantage of the repetition pattern inherent to these kinds of structures. Numerical experiments solving real-life plasmonic biosensors built up from complicated particle assemblies reveal a great improvement of convergence, testifying to the robustness and versatility of the DD approach.
topic Domain decomposition
integral equations
nanoparticle assemblies
Raman spectroscopy
plasmonics.
url https://ieeexplore.ieee.org/document/7582442/
work_keys_str_mv AT diegomsolis surfaceintegralequationdomaindecompositionschemeforsolvingmultiscalenanoparticleassemblieswithrepetitions
AT fernandoobelleiro surfaceintegralequationdomaindecompositionschemeforsolvingmultiscalenanoparticleassemblieswithrepetitions
AT josemtaboada surfaceintegralequationdomaindecompositionschemeforsolvingmultiscalenanoparticleassemblieswithrepetitions
_version_ 1724197498041401344