Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment

Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets...

Full description

Bibliographic Details
Main Authors: Joan Francesc Munoz-Martin, Raul Onrubia, Daniel Pascual, Hyuk Park, Miriam Pablos, Adriano Camps, Christoph Rüdiger, Jeffrey Walker, Alessandra Monerris
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/4/797
id doaj-610a7ce07b0140dbbb0243172057a3c9
record_format Article
spelling doaj-610a7ce07b0140dbbb0243172057a3c92021-02-23T00:00:28ZengMDPI AGRemote Sensing2072-42922021-02-011379779710.3390/rs13040797Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne ExperimentJoan Francesc Munoz-Martin0Raul Onrubia1Daniel Pascual2Hyuk Park3Miriam Pablos4Adriano Camps5Christoph Rüdiger6Jeffrey Walker7Alessandra Monerris8CommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainPhysical and Technological Oceanography Group, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Centre of Excellence Severo Ochoa, Institut de Ciències del Mar, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainDepartment of Civil Engineering, Monash University, Clayton, VIC 3800, AustraliaDepartment of Civil Engineering, Monash University, Clayton, VIC 3800, AustraliaDepartment of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, AustraliaGlobal Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets acquired with the Microwave Interferometer Reflectometer (MIR), an airborne-based dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo) GNSS-R instrument with two 19-element antenna arrays with four electronically steered beams each. The instrument was flown twice over the OzNet soil moisture monitoring network in southern New South Wales (Australia): the first flight was performed after a long period without rain, and the second one just after a rain event. In this work, the impact of surface roughness and vegetation attenuation in the reflectivity of the GNSS-R signal is assessed at both L1 and L5 bands. The work analyzes the reflectivity at different integration times, and finally, an artificial neural network is used to retrieve soil moisture from the reflectivity values. The algorithm is trained and compared to a 20-m resolution downscaled soil moisture estimate derived from SMOS soil moisture, Sentinel-2 normalized difference vegetation index (NDVI) data, and ECMWF Land Surface Temperature.https://www.mdpi.com/2072-4292/13/4/797GNSS-Rdual-bandairbornesoil moisturesurface roughnessvegetation
collection DOAJ
language English
format Article
sources DOAJ
author Joan Francesc Munoz-Martin
Raul Onrubia
Daniel Pascual
Hyuk Park
Miriam Pablos
Adriano Camps
Christoph Rüdiger
Jeffrey Walker
Alessandra Monerris
spellingShingle Joan Francesc Munoz-Martin
Raul Onrubia
Daniel Pascual
Hyuk Park
Miriam Pablos
Adriano Camps
Christoph Rüdiger
Jeffrey Walker
Alessandra Monerris
Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
Remote Sensing
GNSS-R
dual-band
airborne
soil moisture
surface roughness
vegetation
author_facet Joan Francesc Munoz-Martin
Raul Onrubia
Daniel Pascual
Hyuk Park
Miriam Pablos
Adriano Camps
Christoph Rüdiger
Jeffrey Walker
Alessandra Monerris
author_sort Joan Francesc Munoz-Martin
title Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
title_short Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
title_full Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
title_fullStr Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
title_full_unstemmed Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands: Results from Airborne Experiment
title_sort single-pass soil moisture retrieval using gnss-r at l1 and l5 bands: results from airborne experiment
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2021-02-01
description Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets acquired with the Microwave Interferometer Reflectometer (MIR), an airborne-based dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo) GNSS-R instrument with two 19-element antenna arrays with four electronically steered beams each. The instrument was flown twice over the OzNet soil moisture monitoring network in southern New South Wales (Australia): the first flight was performed after a long period without rain, and the second one just after a rain event. In this work, the impact of surface roughness and vegetation attenuation in the reflectivity of the GNSS-R signal is assessed at both L1 and L5 bands. The work analyzes the reflectivity at different integration times, and finally, an artificial neural network is used to retrieve soil moisture from the reflectivity values. The algorithm is trained and compared to a 20-m resolution downscaled soil moisture estimate derived from SMOS soil moisture, Sentinel-2 normalized difference vegetation index (NDVI) data, and ECMWF Land Surface Temperature.
topic GNSS-R
dual-band
airborne
soil moisture
surface roughness
vegetation
url https://www.mdpi.com/2072-4292/13/4/797
work_keys_str_mv AT joanfrancescmunozmartin singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT raulonrubia singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT danielpascual singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT hyukpark singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT miriampablos singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT adrianocamps singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT christophrudiger singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT jeffreywalker singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
AT alessandramonerris singlepasssoilmoistureretrievalusinggnssratl1andl5bandsresultsfromairborneexperiment
_version_ 1724255492790812672