Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer.

Dual-specificity phosphatases (DUSPs) dephosphorylate threonine/serine and tyrosine residues on their substrates. Here we show that DUSP1, DUSP4, and DUSP6 are involved in epithelial-to-mesenchymal transition (EMT) and breast cancer stem cell (CSC) regulation. DUSP1, DUSP4, and DUSP6 are induced dur...

Full description

Bibliographic Details
Main Authors: Tara Boulding, Fan Wu, Robert McCuaig, Jennifer Dunn, Christopher R Sutton, Kristine Hardy, Wenjuan Tu, Amanda Bullman, Desmond Yip, Jane E Dahlstrom, Sudha Rao
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4747493?pdf=render
Description
Summary:Dual-specificity phosphatases (DUSPs) dephosphorylate threonine/serine and tyrosine residues on their substrates. Here we show that DUSP1, DUSP4, and DUSP6 are involved in epithelial-to-mesenchymal transition (EMT) and breast cancer stem cell (CSC) regulation. DUSP1, DUSP4, and DUSP6 are induced during EMT in a PKC pathway signal-mediated EMT model. We show for the first time that the key chromatin-associated kinase PKC-θ directly regulates a subset of DUSP family members. DUSP1, DUSP4, and DUSP6 globally but differentially co-exist with enhancer and permissive active histone post-translational modifications, suggesting that they play distinct roles in gene regulation in EMT/CSCs. We show that nuclear DUSP4 associates with the key acetyltransferase p300 in the context of the chromatin template and dynamically regulates the interplay between two key phosphorylation marks: the 1834 (active) and 89 (inhibitory) residues central to p300's acetyltransferase activity. Furthermore, knockdown with small-interfering RNAs (siRNAs) shows that DUSP4 is required for maintaining H3K27ac, a mark mediated by p300. DUSP1, DUSP4, and DUSP6 knockdown with siRNAs shows that they participate in the formation of CD44hi/CD24lo/EpCAM+ breast CSCs: DUSP1 knockdown reduces CSC formation, while DUSP4 and DUSP6 knockdown enhance CSC formation. Moreover, DUSP6 is overexpressed in patient-derived HER2+ breast carcinomas compared to benign mammary tissue. Taken together, these findings illustrate novel pleiotropic roles for DUSP family members in EMT and CSC regulation in breast cancer.
ISSN:1932-6203