Synthesis and Antimicrobial Activity of Some Novel 5-Alkyl-6-Substituted Uracils and Related Derivatives

6-Chloro-5-ethyl-, n-propyl- and isopropyluracils 5a-c were efficiently prepared from the corresponding 5-alkybarbituric acids 3a-c via treatment with phosphorus oxychloride and N,N-dimethylaniline to yield the corresponding 5-alkyl-2,4,6-trichloro-pyrimidines 4a-c, which were selectively hydrolyzed...

Full description

Bibliographic Details
Main Authors: Nasser R. El-Brollosy, Ali A. El-Emam, Omar A. Al-Deeb, Abdulghafoor A. Al-Turkistani
Format: Article
Language:English
Published: MDPI AG 2011-06-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/16/6/4764/
Description
Summary:6-Chloro-5-ethyl-, n-propyl- and isopropyluracils 5a-c were efficiently prepared from the corresponding 5-alkybarbituric acids 3a-c via treatment with phosphorus oxychloride and N,N-dimethylaniline to yield the corresponding 5-alkyl-2,4,6-trichloro-pyrimidines 4a-c, which were selectively hydrolyzed by heating in 10% aqueous sodium hydroxide for 30 minutes. The reaction of compounds 5a-c with 1-substituted piperazines yielded the corresponding 5-alkyl-6-(4-substituted-1-piperazinyl)uracils 6a-j. The target 8-alkyltetrazolo[1,5-f]pyrimidine-5,7(3H,6H)-diones 7a-c were prepared via the reaction of 5a-c with sodium azide. Compounds 6a-j and 7a-c were tested for in vitro activities against a panel of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Compound 6h displayed potent broad-spectrum antibacterial activity, while compound 6b showed moderate activity against the Gram-positive bacteria. All the tested compounds were practically inactive against Candida albicans.
ISSN:1420-3049