Calibration for Sample-And-Hold Mismatches in M-Channel TIADCs Based on Statistics

Time-interleaved analog-to-digital converter (TIADC) is a good option for high sampling rate applications. However, the inevitable sample-and-hold (S/H) mismatches between channels incur undesirable error and then affect the TIADC’s dynamic performance. Several calibration methods have bee...

Full description

Bibliographic Details
Main Authors: Xiangyu Liu, Hui Xu, Yinan Wang, Yingqiang Dai, Nan Li, Guiqing Liu
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/9/1/198
Description
Summary:Time-interleaved analog-to-digital converter (TIADC) is a good option for high sampling rate applications. However, the inevitable sample-and-hold (S/H) mismatches between channels incur undesirable error and then affect the TIADC’s dynamic performance. Several calibration methods have been proposed for S/H mismatches which either need training signals or have less extensive applicability for different input signals and different numbers of channels. This paper proposes a statistics-based calibration algorithm for S/H mismatches in M-channel TIADCs. Initially, the mismatch coefficients are identified by eliminating the statistical differences between channels. Subsequently, the mismatch-induced error is approximated by employing variable multipliers and differentiators in several Richardson iterations. Finally, the error is subtracted from the original output signal to approximate the expected signal. Simulation results illustrate the effectiveness of the proposed method, the selection of key parameters and the advantage to other methods.
ISSN:2076-3417