Summary: | Fire significantly affects hydrological processes in the waters hed because it changes land cover and it creates a double layer of hydrophobic soil co vered with ash, increasing the surface runoff and the production of debris flow in the basin. Assessing the impacts of fire on overland flow requires the use of modeli ng softwares capable of simulating post-fire discharge. Because a total of 760 wildfire s were detected in the Upper Uberabinha River subbasin in the last nine years, it is o f dire importance to understand the consequential impacts of fire on hydrological pr ocesses in this basin. In this study, the HEC-HMS model was used to evaluate post-fire di scharge in the Upper Uberabinha River watershed. Model was previously calibrated and validated using two representative storms observed in the wet season. After calibra tion, the 5-, 10-, 25-, 50-, 100-, and 200-year storms were simulated in scenarios with incr easing burn severity. The calibrated model performed well in the prediction of discha rge values at a daily basis (0% difference in peak tim ing; 0% difference in peak flow ; 31.8% BIAS ). Peak flow and discharge volume increased and peak timing shifted to the left as severity of burn increased. The highest increment in peak discharge was 74. 7% for the 10-year storm, whereas overall discharge volume raised in up to 31.9% f or the 50-year storm, both after simulation in the mos t fire-impacted scenario. The results reveal that fire highly affects hydrological characteristics, e.g. peak timing a nd flow and discharge volume, in the Upper Uberabinha River watershed. The authors su ggest further investigations concerning the impacts of wildfire on other proc esses, such as the production of debris flow in the basin.
|