Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian

We study an initial boundary value problem for Kirchhoff-type parabolic equation with the fractional p-Laplacian. We first discuss the blow up of solutions in finite time with three initial energy levels: subcritical, critical and supercritical initial energy levels. Then we estimate an upper...

Full description

Bibliographic Details
Main Authors: Yanbing Yang, Xueteng Tian, Meina Zhang, Jihong Shen
Format: Article
Language:English
Published: Texas State University 2018-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/155/abstr.html
id doaj-609231081e9448a0a0d3b5d5e9144d36
record_format Article
spelling doaj-609231081e9448a0a0d3b5d5e9144d362020-11-25T02:31:26ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912018-08-012018155,122Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-LaplacianYanbing Yang0Xueteng Tian1Meina Zhang2Jihong Shen3 Harbin Engineering Univ., Harbin, China Harbin Engineering Univ., Harbin, China Harbin Engineering Univ., Harbin, China Harbin Engineering Univ., Harbin, China We study an initial boundary value problem for Kirchhoff-type parabolic equation with the fractional p-Laplacian. We first discuss the blow up of solutions in finite time with three initial energy levels: subcritical, critical and supercritical initial energy levels. Then we estimate an upper bound of the blowup time for low and for high initial energies.http://ejde.math.txstate.edu/Volumes/2018/155/abstr.htmlKirchhoff-type problemparabolic equationfractional p-Laplacianblow-up of solutionblow-up time
collection DOAJ
language English
format Article
sources DOAJ
author Yanbing Yang
Xueteng Tian
Meina Zhang
Jihong Shen
spellingShingle Yanbing Yang
Xueteng Tian
Meina Zhang
Jihong Shen
Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
Electronic Journal of Differential Equations
Kirchhoff-type problem
parabolic equation
fractional p-Laplacian
blow-up of solution
blow-up time
author_facet Yanbing Yang
Xueteng Tian
Meina Zhang
Jihong Shen
author_sort Yanbing Yang
title Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
title_short Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
title_full Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
title_fullStr Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
title_full_unstemmed Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
title_sort blowup of solutions to degenerate kirchhoff-type diffusion problems involving the fractional p-laplacian
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2018-08-01
description We study an initial boundary value problem for Kirchhoff-type parabolic equation with the fractional p-Laplacian. We first discuss the blow up of solutions in finite time with three initial energy levels: subcritical, critical and supercritical initial energy levels. Then we estimate an upper bound of the blowup time for low and for high initial energies.
topic Kirchhoff-type problem
parabolic equation
fractional p-Laplacian
blow-up of solution
blow-up time
url http://ejde.math.txstate.edu/Volumes/2018/155/abstr.html
work_keys_str_mv AT yanbingyang blowupofsolutionstodegeneratekirchhofftypediffusionproblemsinvolvingthefractionalplaplacian
AT xuetengtian blowupofsolutionstodegeneratekirchhofftypediffusionproblemsinvolvingthefractionalplaplacian
AT meinazhang blowupofsolutionstodegeneratekirchhofftypediffusionproblemsinvolvingthefractionalplaplacian
AT jihongshen blowupofsolutionstodegeneratekirchhofftypediffusionproblemsinvolvingthefractionalplaplacian
_version_ 1724824569899909120