On a Fractal Representation of the Density of Primes

The number of primes less or equal to a real number x, π(x), has been approximated in the past by the reciprocal of the logarithm of the number x. Such an approximation works well when x is large but it can be poor when x is small. This paper introduces a fractal formalism to provide more fl exible...

Full description

Bibliographic Details
Main Authors: Joy Mirasol, Efren O. Barabat
Format: Article
Language:English
Published: Center for Policy, Research and Development Studies 2014-12-01
Series:Recoletos Multidisciplinary Research Journal
Subjects:
Online Access:https://rmrj.usjr.edu.ph/rmrj/index.php/RMRJ/article/view/96
Description
Summary:The number of primes less or equal to a real number x, π(x), has been approximated in the past by the reciprocal of the logarithm of the number x. Such an approximation works well when x is large but it can be poor when x is small. This paper introduces a fractal formalism to provide more fl exible approximation to the density of primes less or equal to a number x using the λ(s)-fractal spectrum. Results revealed that the density of primes less than or equal to x can be modeled as a monofractal probability mass function with high fractal dimension for large x. High fractal dimensions can often be decomposed to form a multifractal representation. The fractal density representation of the density of primes is closely linked to the Riemann zeta function and, thus, to the famous unsolved Riemann hypothesis.
ISSN:2423-1398
2408-3755