Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight

Free bending vibrations of hinged vertical uniform rod with taking into account the dead weight are investigated. The research is based on the exact solution of the partial differential vibration equation with variable coefficients. This approach allows to get more reliable picture of rod’s vibratio...

Full description

Bibliographic Details
Main Authors: Krutii Yurii, Suriyaninov Mykola, Vandynskyi Victor
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201823002016
id doaj-607bc7c36cb542d68ee8c7a4f17b1c35
record_format Article
spelling doaj-607bc7c36cb542d68ee8c7a4f17b1c352021-02-02T05:41:31ZengEDP SciencesMATEC Web of Conferences2261-236X2018-01-012300201610.1051/matecconf/201823002016matecconf_transbud2018_02016Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weightKrutii Yurii0Suriyaninov Mykola1Vandynskyi Victor2Odessa State Academy of Civil Engineering and ArchitectureOdessa State Academy of Civil Engineering and ArchitectureOdessa State Academy of Civil Engineering and ArchitectureFree bending vibrations of hinged vertical uniform rod with taking into account the dead weight are investigated. The research is based on the exact solution of the partial differential vibration equation with variable coefficients. This approach allows to get more reliable picture of rod’s vibration because only the exact solution carries information of a qualitative nature and forms the most complete picture of the physical phenomenon under consideration. The frequencies equation of problem was written in dimensionless form and the way of its root finding is shown. It has been shown that the problem of determination the nature frequencies of structures is reduced to finding corresponding dimensionless vibration coefficients from equation. The formulas for the first three vibration frequencies of structures were obtained in analytical form. An analytic relationship between the frequencies with and without taking into account the dead weight of the structures was established. The nature of the dependence of frequencies on the value of the longitudinal load was revealed. The presence of conclusive analytical formulas for determining the vibration frequencies of hinged vertical structures with taking into account the dead weight is a real alternative for using the approximate methods for solving this class of problems of solid mechanics.https://doi.org/10.1051/matecconf/201823002016
collection DOAJ
language English
format Article
sources DOAJ
author Krutii Yurii
Suriyaninov Mykola
Vandynskyi Victor
spellingShingle Krutii Yurii
Suriyaninov Mykola
Vandynskyi Victor
Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
MATEC Web of Conferences
author_facet Krutii Yurii
Suriyaninov Mykola
Vandynskyi Victor
author_sort Krutii Yurii
title Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
title_short Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
title_full Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
title_fullStr Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
title_full_unstemmed Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
title_sort analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight
publisher EDP Sciences
series MATEC Web of Conferences
issn 2261-236X
publishDate 2018-01-01
description Free bending vibrations of hinged vertical uniform rod with taking into account the dead weight are investigated. The research is based on the exact solution of the partial differential vibration equation with variable coefficients. This approach allows to get more reliable picture of rod’s vibration because only the exact solution carries information of a qualitative nature and forms the most complete picture of the physical phenomenon under consideration. The frequencies equation of problem was written in dimensionless form and the way of its root finding is shown. It has been shown that the problem of determination the nature frequencies of structures is reduced to finding corresponding dimensionless vibration coefficients from equation. The formulas for the first three vibration frequencies of structures were obtained in analytical form. An analytic relationship between the frequencies with and without taking into account the dead weight of the structures was established. The nature of the dependence of frequencies on the value of the longitudinal load was revealed. The presence of conclusive analytical formulas for determining the vibration frequencies of hinged vertical structures with taking into account the dead weight is a real alternative for using the approximate methods for solving this class of problems of solid mechanics.
url https://doi.org/10.1051/matecconf/201823002016
work_keys_str_mv AT krutiiyurii analyticformulasforthenaturalfrequenciesofhingedstructureswithtakingintoaccountthedeadweight
AT suriyaninovmykola analyticformulasforthenaturalfrequenciesofhingedstructureswithtakingintoaccountthedeadweight
AT vandynskyivictor analyticformulasforthenaturalfrequenciesofhingedstructureswithtakingintoaccountthedeadweight
_version_ 1724302952531755008