Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
<p>Abstract</p> <p>An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are Hölder continuous on <inline-formula>...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2008-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2008/189748 |
id |
doaj-60439cdfc1b24c4ca57d4686eb2ffbff |
---|---|
record_format |
Article |
spelling |
doaj-60439cdfc1b24c4ca57d4686eb2ffbff2020-11-25T00:26:36ZengSpringerOpenBoundary Value Problems1687-27621687-27702008-01-0120081189748Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the SolutionMujaković Nermina<p>Abstract</p> <p>An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are Hölder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i1.gif"/></inline-formula> and transforming the original problem into homogeneous one, we prove that the state function is Hölder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i2.gif"/></inline-formula>, for each <inline-formula> <graphic file="1687-2770-2008-189748-i3.gif"/></inline-formula>. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.</p>http://www.boundaryvalueproblems.com/content/2008/189748 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mujaković Nermina |
spellingShingle |
Mujaković Nermina Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution Boundary Value Problems |
author_facet |
Mujaković Nermina |
author_sort |
Mujaković Nermina |
title |
Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution |
title_short |
Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution |
title_full |
Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution |
title_fullStr |
Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution |
title_full_unstemmed |
Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution |
title_sort |
nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2008-01-01 |
description |
<p>Abstract</p> <p>An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are Hölder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i1.gif"/></inline-formula> and transforming the original problem into homogeneous one, we prove that the state function is Hölder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i2.gif"/></inline-formula>, for each <inline-formula> <graphic file="1687-2770-2008-189748-i3.gif"/></inline-formula>. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.</p> |
url |
http://www.boundaryvalueproblems.com/content/2008/189748 |
work_keys_str_mv |
AT mujakovi263nermina nonhomogeneousboundaryvalueproblemforonedimensionalcompressibleviscousmicropolarfluidmodelregularityofthesolution |
_version_ |
1725343807115886592 |