Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution

<p>Abstract</p> <p>An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are H&#246;lder continuous on <inline-formula>...

Full description

Bibliographic Details
Main Author: Mujakovi&#263; Nermina
Format: Article
Language:English
Published: SpringerOpen 2008-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2008/189748
id doaj-60439cdfc1b24c4ca57d4686eb2ffbff
record_format Article
spelling doaj-60439cdfc1b24c4ca57d4686eb2ffbff2020-11-25T00:26:36ZengSpringerOpenBoundary Value Problems1687-27621687-27702008-01-0120081189748Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the SolutionMujakovi&#263; Nermina<p>Abstract</p> <p>An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are H&#246;lder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i1.gif"/></inline-formula> and transforming the original problem into homogeneous one, we prove that the state function is H&#246;lder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i2.gif"/></inline-formula>, for each <inline-formula> <graphic file="1687-2770-2008-189748-i3.gif"/></inline-formula>. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.</p>http://www.boundaryvalueproblems.com/content/2008/189748
collection DOAJ
language English
format Article
sources DOAJ
author Mujakovi&#263; Nermina
spellingShingle Mujakovi&#263; Nermina
Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
Boundary Value Problems
author_facet Mujakovi&#263; Nermina
author_sort Mujakovi&#263; Nermina
title Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
title_short Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
title_full Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
title_fullStr Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
title_full_unstemmed Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution
title_sort nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2762
1687-2770
publishDate 2008-01-01
description <p>Abstract</p> <p>An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are H&#246;lder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i1.gif"/></inline-formula> and transforming the original problem into homogeneous one, we prove that the state function is H&#246;lder continuous on <inline-formula> <graphic file="1687-2770-2008-189748-i2.gif"/></inline-formula>, for each <inline-formula> <graphic file="1687-2770-2008-189748-i3.gif"/></inline-formula>. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.</p>
url http://www.boundaryvalueproblems.com/content/2008/189748
work_keys_str_mv AT mujakovi263nermina nonhomogeneousboundaryvalueproblemforonedimensionalcompressibleviscousmicropolarfluidmodelregularityofthesolution
_version_ 1725343807115886592