G 4 flux, algebraic cycles and complex structure moduli stabilization

Abstract We construct G 4 fluxes that stabilize all of the 426 complex structure moduli of the sextic Calabi-Yau fourfold at the Fermat point. Studying flux stabilization usually requires solving Picard-Fuchs equations, which becomes unfeasible for models with many moduli. Here, we instead start by...

Full description

Bibliographic Details
Main Authors: A. P. Braun, R. Valandro
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2021)207
Description
Summary:Abstract We construct G 4 fluxes that stabilize all of the 426 complex structure moduli of the sextic Calabi-Yau fourfold at the Fermat point. Studying flux stabilization usually requires solving Picard-Fuchs equations, which becomes unfeasible for models with many moduli. Here, we instead start by considering a specific point in the complex structure moduli space, and look for a flux that fixes us there. We show how to construct such fluxes by using algebraic cycles and analyze flat directions. This is discussed in detail for the sextic Calabi-Yau fourfold at the Fermat point, and we observe that there appears to be tension between M2-tadpole cancellation and the requirement of stabilizing all moduli. Finally, we apply our results to show that even though symmetric fluxes allow to automatically solve several F-term equations, they typically lead to flat directions.
ISSN:1029-8479