Maraviroc-Mediated Lung Protection following Trauma-Hemorrhagic Shock

Objectives. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in response to injury. Maraviroc has been shown to have potent anti-inflammatory effects. The aim of this study was to investigate whether PPARγ plays an important role in maraviroc-medi...

Full description

Bibliographic Details
Main Authors: Fu-Chao Liu, Chih-Wen Zheng, Huang-Ping Yu
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2016/5302069
Description
Summary:Objectives. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in response to injury. Maraviroc has been shown to have potent anti-inflammatory effects. The aim of this study was to investigate whether PPARγ plays an important role in maraviroc-mediated lung protection following trauma-hemorrhage. Methods. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously) with and without a PPARγ inhibitor GW9662 (1 mg/kg, intravenously), GW9662, or vehicle was administered. Lung water content, tissue histology, and other various parameters were measured (n=8 rats/group) 24 hours after resuscitation. One-way ANOVA and Tukey’s testing were used for statistical analysis. Results. Trauma-hemorrhage significantly increased lung water content, myeloperoxidase activity, intercellular adhesion molecule-1, interleukin-6, and interleukin-1β levels. These parameters significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also decreased lung tissue damage as compared to the vehicle-treated trauma-hemorrhaged rats. Coadministration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on these parameters and lung injury. Conclusion. These results suggest that PPARγ might play a key role in maraviroc-mediated lung protection following trauma-hemorrhage.
ISSN:2314-6133
2314-6141