Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode
Surface plasmon resonance is the effect of electron oscillation in a structure stimulated by incident light. When noble materials such as Ag, Au or Cu are added into the titania (compact or mesoporous) structure of the sensitized solar cell, the plasmonic effect of such materials will result an imp...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nigerian Society of Physical Sciences
2020-02-01
|
Series: | Journal of Nigerian Society of Physical Sciences |
Subjects: | |
Online Access: | https://journal.nsps.org.ng/index.php/jnsps/article/view/24 |
id |
doaj-60306b6b2c33461b9695df8cb442a2dd |
---|---|
record_format |
Article |
spelling |
doaj-60306b6b2c33461b9695df8cb442a2dd2020-11-25T03:26:21ZengNigerian Society of Physical SciencesJournal of Nigerian Society of Physical Sciences2714-28172714-47042020-02-012110.46481/jnsps.2020.24Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite PhotoanodeEli Danladi0Jamila Tasiu1Lucky Endas2Nigerian Defence Academy, KadunaKaduna State University, KadunaGreenfield University, Kaduna Surface plasmon resonance is the effect of electron oscillation in a structure stimulated by incident light. When noble materials such as Ag, Au or Cu are added into the titania (compact or mesoporous) structure of the sensitized solar cell, the plasmonic effect of such materials will result an improved performance of the device. Placing AgNPs at different position will produce a variety of result. In this work the systematic design and formation of plasmonic dye sensitized solar cells (DSSCs) by integrating Ag NPs nanoparticles (NPs) in two distinct configurations; on the c-TiO2 and on m-TiO2 were reported. The power conversion efficiency (PCE), Jsc and Voc of the reference device shows a value of 0.36 %, 1.89 mAcm-2 and 0.45 V. Upon introduction of AgNPs on the c-TiO2, a PCE of 0.64 %, Jsc of 2.53 mAcm-2 and Voc of 0.46 V were recorded, which improved the PCE ~ 63.90 % over that of the prestine device. When AgNPs is introduced on the m-TiO2, a PCE of 0.71 %, Jsc of 2.83 mAcm-2 and Voc of 0.46 V were obtained which which results to increase in power conversion efficiency (PCE) from 0.36 % to 0.71 %, demonstrating ~1.97 time’s enhancement, compared with the reference device without the metal NPs. The improvement is attributed to an increase in photocurrent density due to enhanced light harvesting by silver nanoparticles. https://journal.nsps.org.ng/index.php/jnsps/article/view/24DSSCs, Surface Plasmon, Nanoparticles, Natural Pigment. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eli Danladi Jamila Tasiu Lucky Endas |
spellingShingle |
Eli Danladi Jamila Tasiu Lucky Endas Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode Journal of Nigerian Society of Physical Sciences DSSCs, Surface Plasmon, Nanoparticles, Natural Pigment. |
author_facet |
Eli Danladi Jamila Tasiu Lucky Endas |
author_sort |
Eli Danladi |
title |
Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode |
title_short |
Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode |
title_full |
Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode |
title_fullStr |
Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode |
title_full_unstemmed |
Preparation and Characterization of High Performance Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode |
title_sort |
preparation and characterization of high performance dye sensitized solar cells with silver nanoparticles in nanocomposite photoanode |
publisher |
Nigerian Society of Physical Sciences |
series |
Journal of Nigerian Society of Physical Sciences |
issn |
2714-2817 2714-4704 |
publishDate |
2020-02-01 |
description |
Surface plasmon resonance is the effect of electron oscillation in a structure stimulated by incident light. When noble materials such as Ag, Au or Cu are added into the titania (compact or mesoporous) structure of the sensitized solar cell, the plasmonic effect of such materials will result an improved performance of the device. Placing AgNPs at different position will produce a variety of result. In this work the systematic design and formation of plasmonic dye sensitized solar cells (DSSCs) by integrating Ag NPs nanoparticles (NPs) in two distinct configurations; on the c-TiO2 and on m-TiO2 were reported. The power conversion efficiency (PCE), Jsc and Voc of the reference device shows a value of 0.36 %, 1.89 mAcm-2 and 0.45 V. Upon introduction of AgNPs on the c-TiO2, a PCE of 0.64 %, Jsc of 2.53 mAcm-2 and Voc of 0.46 V were recorded, which improved the PCE ~ 63.90 % over that of the prestine device. When AgNPs is introduced on the m-TiO2, a PCE of 0.71 %, Jsc of 2.83 mAcm-2 and Voc of 0.46 V were obtained which which results to increase in power conversion efficiency (PCE) from 0.36 % to 0.71 %, demonstrating ~1.97 time’s enhancement, compared with the reference device without the metal NPs. The improvement is attributed to an increase in photocurrent density due to enhanced light harvesting by silver nanoparticles.
|
topic |
DSSCs, Surface Plasmon, Nanoparticles, Natural Pigment. |
url |
https://journal.nsps.org.ng/index.php/jnsps/article/view/24 |
work_keys_str_mv |
AT elidanladi preparationandcharacterizationofhighperformancedyesensitizedsolarcellswithsilvernanoparticlesinnanocompositephotoanode AT jamilatasiu preparationandcharacterizationofhighperformancedyesensitizedsolarcellswithsilvernanoparticlesinnanocompositephotoanode AT luckyendas preparationandcharacterizationofhighperformancedyesensitizedsolarcellswithsilvernanoparticlesinnanocompositephotoanode |
_version_ |
1724593332463599616 |