Soft Sensor of Vehicle State Estimation Based on the Kernel Principal Component and Improved Neural Network

In the car control systems, it is hard to measure some key vehicle states directly and accurately when running on the road and the cost of the measurement is high as well. To address these problems, a vehicle state estimation method based on the kernel principal component analysis and the improved E...

Full description

Bibliographic Details
Main Authors: Haorui Liu, Juan Yang, Heli Yang, Fengyan Yi
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2016/9568785
Description
Summary:In the car control systems, it is hard to measure some key vehicle states directly and accurately when running on the road and the cost of the measurement is high as well. To address these problems, a vehicle state estimation method based on the kernel principal component analysis and the improved Elman neural network is proposed. Combining with nonlinear vehicle model of three degrees of freedom (3 DOF), longitudinal, lateral, and yaw motion, this paper applies the method to the soft sensor of the vehicle states. The simulation results of the double lane change tested by Matlab/SIMULINK cosimulation prove the KPCA-IENN algorithm (kernel principal component algorithm and improved Elman neural network) to be quick and precise when tracking the vehicle states within the nonlinear area. This algorithm method can meet the software performance requirements of the vehicle states estimation in precision, tracking speed, noise suppression, and other aspects.
ISSN:1687-725X
1687-7268