Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane

The aim of this paper was to obtain Gauss–Bonnet theorems on the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane. At the same time, the sub-Lorentzian limits of Gaussian curvature for surfaces which are <inline-formula><math display="inline&...

Full description

Bibliographic Details
Main Authors: Sining Wei, Yong Wang
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/173
id doaj-5fcf1fe527e243a3b7fa898472b3989b
record_format Article
spelling doaj-5fcf1fe527e243a3b7fa898472b3989b2021-01-23T00:03:05ZengMDPI AGSymmetry2073-89942021-01-011317317310.3390/sym13020173Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski PlaneSining Wei0Yong Wang1School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaThe aim of this paper was to obtain Gauss–Bonnet theorems on the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane. At the same time, the sub-Lorentzian limits of Gaussian curvature for surfaces which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth in the Lorentzian Heisenberg group away from characteristic points and signed geodesic curvature for curves which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth on surfaces are studied. Using a similar method, we also studied the corresponding contents on Lorentzian group of rigid motions of the Minkowski plane.https://www.mdpi.com/2073-8994/13/2/173Lorentzian Heisenberg groupLorentzian group of rigid motions of the minkowski planeGauss-Bonnet theoremsub-Lorentzian limit
collection DOAJ
language English
format Article
sources DOAJ
author Sining Wei
Yong Wang
spellingShingle Sining Wei
Yong Wang
Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
Symmetry
Lorentzian Heisenberg group
Lorentzian group of rigid motions of the minkowski plane
Gauss-Bonnet theorem
sub-Lorentzian limit
author_facet Sining Wei
Yong Wang
author_sort Sining Wei
title Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
title_short Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
title_full Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
title_fullStr Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
title_full_unstemmed Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
title_sort gauss–bonnet theorems in the lorentzian heisenberg group and the lorentzian group of rigid motions of the minkowski plane
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-01-01
description The aim of this paper was to obtain Gauss–Bonnet theorems on the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane. At the same time, the sub-Lorentzian limits of Gaussian curvature for surfaces which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth in the Lorentzian Heisenberg group away from characteristic points and signed geodesic curvature for curves which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth on surfaces are studied. Using a similar method, we also studied the corresponding contents on Lorentzian group of rigid motions of the Minkowski plane.
topic Lorentzian Heisenberg group
Lorentzian group of rigid motions of the minkowski plane
Gauss-Bonnet theorem
sub-Lorentzian limit
url https://www.mdpi.com/2073-8994/13/2/173
work_keys_str_mv AT siningwei gaussbonnettheoremsinthelorentzianheisenberggroupandthelorentziangroupofrigidmotionsoftheminkowskiplane
AT yongwang gaussbonnettheoremsinthelorentzianheisenberggroupandthelorentziangroupofrigidmotionsoftheminkowskiplane
_version_ 1724327341687046144