Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane
The aim of this paper was to obtain Gauss–Bonnet theorems on the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane. At the same time, the sub-Lorentzian limits of Gaussian curvature for surfaces which are <inline-formula><math display="inline&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/2/173 |
id |
doaj-5fcf1fe527e243a3b7fa898472b3989b |
---|---|
record_format |
Article |
spelling |
doaj-5fcf1fe527e243a3b7fa898472b3989b2021-01-23T00:03:05ZengMDPI AGSymmetry2073-89942021-01-011317317310.3390/sym13020173Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski PlaneSining Wei0Yong Wang1School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaThe aim of this paper was to obtain Gauss–Bonnet theorems on the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane. At the same time, the sub-Lorentzian limits of Gaussian curvature for surfaces which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth in the Lorentzian Heisenberg group away from characteristic points and signed geodesic curvature for curves which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth on surfaces are studied. Using a similar method, we also studied the corresponding contents on Lorentzian group of rigid motions of the Minkowski plane.https://www.mdpi.com/2073-8994/13/2/173Lorentzian Heisenberg groupLorentzian group of rigid motions of the minkowski planeGauss-Bonnet theoremsub-Lorentzian limit |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sining Wei Yong Wang |
spellingShingle |
Sining Wei Yong Wang Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane Symmetry Lorentzian Heisenberg group Lorentzian group of rigid motions of the minkowski plane Gauss-Bonnet theorem sub-Lorentzian limit |
author_facet |
Sining Wei Yong Wang |
author_sort |
Sining Wei |
title |
Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane |
title_short |
Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane |
title_full |
Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane |
title_fullStr |
Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane |
title_full_unstemmed |
Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane |
title_sort |
gauss–bonnet theorems in the lorentzian heisenberg group and the lorentzian group of rigid motions of the minkowski plane |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-01-01 |
description |
The aim of this paper was to obtain Gauss–Bonnet theorems on the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane. At the same time, the sub-Lorentzian limits of Gaussian curvature for surfaces which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth in the Lorentzian Heisenberg group away from characteristic points and signed geodesic curvature for curves which are <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-smooth on surfaces are studied. Using a similar method, we also studied the corresponding contents on Lorentzian group of rigid motions of the Minkowski plane. |
topic |
Lorentzian Heisenberg group Lorentzian group of rigid motions of the minkowski plane Gauss-Bonnet theorem sub-Lorentzian limit |
url |
https://www.mdpi.com/2073-8994/13/2/173 |
work_keys_str_mv |
AT siningwei gaussbonnettheoremsinthelorentzianheisenberggroupandthelorentziangroupofrigidmotionsoftheminkowskiplane AT yongwang gaussbonnettheoremsinthelorentzianheisenberggroupandthelorentziangroupofrigidmotionsoftheminkowskiplane |
_version_ |
1724327341687046144 |