Modification of secondary products of processing triticale into starch with a new strain of the fungus Geotrichium candidum

The aim of this work was to study the possibility of using a new strain of the fungus Geotrichum candidum for the bioconversion of serum remaining after the isolation of starch and proteins from triticale grain. The fungus strain Geotrichum candidum 977 was isolated from the steep waters of tritical...

Full description

Bibliographic Details
Main Authors: Kolpakova V V, Ulanova R V, Kulikov D S
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/84/e3sconf_TPACEE2020_04033.pdf
Description
Summary:The aim of this work was to study the possibility of using a new strain of the fungus Geotrichum candidum for the bioconversion of serum remaining after the isolation of starch and proteins from triticale grain. The fungus strain Geotrichum candidum 977 was isolated from the steep waters of triticale grains formed during the production of starch and identified on the basis of analysis of the sequence of ribosomal genes. The strain was characterized by large cells efficient separation of biomass from the culture liquid and high growth rate. On protein-free whey, which remains after isolating proteins from steeping waters the fungus assimilated glucose, maltotriose, fructose and did not assimilate maltose. At a pH of 5.0 the growth of the fungus was not observed at a pH of 5.5 to 6.5 it was weak at a pH of 7.5 to 8.5, the productivity of the fungus increased 1.8 times and amounted to 3.00-3,15 g / 100 cm3. During growth the strain alkalized the medium from pH 5.5 to pH 8.5. The microbial-plant concentrate contained 33.3 ± 2.1% protein and 19 amino acids with a predominance of alanine, aspartic, glutamic acids, lysine, threonine and leucine. The score of essential amino acids exceeded 100% with the exception of sulfurcontaining ones (64 -72%). Thus, the possibility of using a new strain of the fungus G. Candidum 977 for the utilization of wastewater generated during the production of starch and proteins from triticale grains has been shown to obtain fodder protein concentrates.
ISSN:2267-1242