The Radio numbers of all graphs of order n and diameter n-2

<p>A radio labeling of a simple connected graph G is a function c:V(G) \to  Z_+ such that for every two distinct vertices u and v of G</p><p>distance(u,v)+|c(u)-c(v)|\geq 1+ diameter(G).</p><p><br />The radio number of a graph G is the smallest integer M for which...

Full description

Bibliographic Details
Main Authors: Katherine F. Benson, Matthew Porter, Maggy Tomova
Format: Article
Language:English
Published: Università degli Studi di Catania 2013-11-01
Series:Le Matematiche
Subjects:
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1073
id doaj-5fb8b5590948481f8c9dad3aa8040829
record_format Article
spelling doaj-5fb8b5590948481f8c9dad3aa80408292020-11-25T03:40:15ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982013-11-01682167190869The Radio numbers of all graphs of order n and diameter n-2Katherine F. BensonMatthew PorterMaggy Tomova<p>A radio labeling of a simple connected graph G is a function c:V(G) \to  Z_+ such that for every two distinct vertices u and v of G</p><p>distance(u,v)+|c(u)-c(v)|\geq 1+ diameter(G).</p><p><br />The radio number of a graph G is the smallest integer M for which there exists a labeling c with c(v)\leq M for all v\in V(G). The radio number of graphs of order n and diameter n-1, i.e., paths, was determined in [7]. Here we determine the radio numbers of all graphs of order n and diameter n-2.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1073Radio number
collection DOAJ
language English
format Article
sources DOAJ
author Katherine F. Benson
Matthew Porter
Maggy Tomova
spellingShingle Katherine F. Benson
Matthew Porter
Maggy Tomova
The Radio numbers of all graphs of order n and diameter n-2
Le Matematiche
Radio number
author_facet Katherine F. Benson
Matthew Porter
Maggy Tomova
author_sort Katherine F. Benson
title The Radio numbers of all graphs of order n and diameter n-2
title_short The Radio numbers of all graphs of order n and diameter n-2
title_full The Radio numbers of all graphs of order n and diameter n-2
title_fullStr The Radio numbers of all graphs of order n and diameter n-2
title_full_unstemmed The Radio numbers of all graphs of order n and diameter n-2
title_sort radio numbers of all graphs of order n and diameter n-2
publisher Università degli Studi di Catania
series Le Matematiche
issn 0373-3505
2037-5298
publishDate 2013-11-01
description <p>A radio labeling of a simple connected graph G is a function c:V(G) \to  Z_+ such that for every two distinct vertices u and v of G</p><p>distance(u,v)+|c(u)-c(v)|\geq 1+ diameter(G).</p><p><br />The radio number of a graph G is the smallest integer M for which there exists a labeling c with c(v)\leq M for all v\in V(G). The radio number of graphs of order n and diameter n-1, i.e., paths, was determined in [7]. Here we determine the radio numbers of all graphs of order n and diameter n-2.</p>
topic Radio number
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1073
work_keys_str_mv AT katherinefbenson theradionumbersofallgraphsofordernanddiametern2
AT matthewporter theradionumbersofallgraphsofordernanddiametern2
AT maggytomova theradionumbersofallgraphsofordernanddiametern2
AT katherinefbenson radionumbersofallgraphsofordernanddiametern2
AT matthewporter radionumbersofallgraphsofordernanddiametern2
AT maggytomova radionumbersofallgraphsofordernanddiametern2
_version_ 1724535250670845952