The Radio numbers of all graphs of order n and diameter n-2
<p>A radio labeling of a simple connected graph G is a function c:V(G) \to Z_+ such that for every two distinct vertices u and v of G</p><p>distance(u,v)+|c(u)-c(v)|\geq 1+ diameter(G).</p><p><br />The radio number of a graph G is the smallest integer M for which...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
2013-11-01
|
Series: | Le Matematiche |
Subjects: | |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1073 |
id |
doaj-5fb8b5590948481f8c9dad3aa8040829 |
---|---|
record_format |
Article |
spelling |
doaj-5fb8b5590948481f8c9dad3aa80408292020-11-25T03:40:15ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982013-11-01682167190869The Radio numbers of all graphs of order n and diameter n-2Katherine F. BensonMatthew PorterMaggy Tomova<p>A radio labeling of a simple connected graph G is a function c:V(G) \to Z_+ such that for every two distinct vertices u and v of G</p><p>distance(u,v)+|c(u)-c(v)|\geq 1+ diameter(G).</p><p><br />The radio number of a graph G is the smallest integer M for which there exists a labeling c with c(v)\leq M for all v\in V(G). The radio number of graphs of order n and diameter n-1, i.e., paths, was determined in [7]. Here we determine the radio numbers of all graphs of order n and diameter n-2.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1073Radio number |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Katherine F. Benson Matthew Porter Maggy Tomova |
spellingShingle |
Katherine F. Benson Matthew Porter Maggy Tomova The Radio numbers of all graphs of order n and diameter n-2 Le Matematiche Radio number |
author_facet |
Katherine F. Benson Matthew Porter Maggy Tomova |
author_sort |
Katherine F. Benson |
title |
The Radio numbers of all graphs of order n and diameter n-2 |
title_short |
The Radio numbers of all graphs of order n and diameter n-2 |
title_full |
The Radio numbers of all graphs of order n and diameter n-2 |
title_fullStr |
The Radio numbers of all graphs of order n and diameter n-2 |
title_full_unstemmed |
The Radio numbers of all graphs of order n and diameter n-2 |
title_sort |
radio numbers of all graphs of order n and diameter n-2 |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
2013-11-01 |
description |
<p>A radio labeling of a simple connected graph G is a function c:V(G) \to Z_+ such that for every two distinct vertices u and v of G</p><p>distance(u,v)+|c(u)-c(v)|\geq 1+ diameter(G).</p><p><br />The radio number of a graph G is the smallest integer M for which there exists a labeling c with c(v)\leq M for all v\in V(G). The radio number of graphs of order n and diameter n-1, i.e., paths, was determined in [7]. Here we determine the radio numbers of all graphs of order n and diameter n-2.</p> |
topic |
Radio number |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1073 |
work_keys_str_mv |
AT katherinefbenson theradionumbersofallgraphsofordernanddiametern2 AT matthewporter theradionumbersofallgraphsofordernanddiametern2 AT maggytomova theradionumbersofallgraphsofordernanddiametern2 AT katherinefbenson radionumbersofallgraphsofordernanddiametern2 AT matthewporter radionumbersofallgraphsofordernanddiametern2 AT maggytomova radionumbersofallgraphsofordernanddiametern2 |
_version_ |
1724535250670845952 |