Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm excee...

Full description

Bibliographic Details
Main Authors: D. S. Moreira, K. M. Longo, S. R. Freitas, M. A. Yamasoe, L. M. Mercado, N. E. Rosário, E. Gloor, R. S. M. Viana, J. B. Miller, L. V. Gatti, K. T. Wiedemann, L. K. G. Domingues, C. C. S. Correia
Format: Article
Language:English
Published: Copernicus Publications 2017-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/17/14785/2017/acp-17-14785-2017.pdf
id doaj-5faaf57d17ee41c1adc18f428af34f35
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author D. S. Moreira
D. S. Moreira
K. M. Longo
K. M. Longo
S. R. Freitas
S. R. Freitas
M. A. Yamasoe
L. M. Mercado
L. M. Mercado
N. E. Rosário
E. Gloor
R. S. M. Viana
J. B. Miller
L. V. Gatti
L. V. Gatti
K. T. Wiedemann
L. K. G. Domingues
L. K. G. Domingues
C. C. S. Correia
C. C. S. Correia
spellingShingle D. S. Moreira
D. S. Moreira
K. M. Longo
K. M. Longo
S. R. Freitas
S. R. Freitas
M. A. Yamasoe
L. M. Mercado
L. M. Mercado
N. E. Rosário
E. Gloor
R. S. M. Viana
J. B. Miller
L. V. Gatti
L. V. Gatti
K. T. Wiedemann
L. K. G. Domingues
L. K. G. Domingues
C. C. S. Correia
C. C. S. Correia
Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
Atmospheric Chemistry and Physics
author_facet D. S. Moreira
D. S. Moreira
K. M. Longo
K. M. Longo
S. R. Freitas
S. R. Freitas
M. A. Yamasoe
L. M. Mercado
L. M. Mercado
N. E. Rosário
E. Gloor
R. S. M. Viana
J. B. Miller
L. V. Gatti
L. V. Gatti
K. T. Wiedemann
L. K. G. Domingues
L. K. G. Domingues
C. C. S. Correia
C. C. S. Correia
author_sort D. S. Moreira
title Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
title_short Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
title_full Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
title_fullStr Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
title_full_unstemmed Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
title_sort modeling the radiative effects of biomass burning aerosols on carbon fluxes in the amazon region
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2017-12-01
description Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO<sub>2</sub> fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO<sub>2</sub> fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO<sub>2</sub> fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO<sub>2</sub> to the atmosphere.
url https://www.atmos-chem-phys.net/17/14785/2017/acp-17-14785-2017.pdf
work_keys_str_mv AT dsmoreira modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT dsmoreira modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT kmlongo modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT kmlongo modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT srfreitas modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT srfreitas modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT mayamasoe modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT lmmercado modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT lmmercado modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT nerosario modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT egloor modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT rsmviana modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT jbmiller modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT lvgatti modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT lvgatti modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT ktwiedemann modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT lkgdomingues modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT lkgdomingues modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT ccscorreia modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
AT ccscorreia modelingtheradiativeeffectsofbiomassburningaerosolsoncarbonfluxesintheamazonregion
_version_ 1725446441779855360
spelling doaj-5faaf57d17ee41c1adc18f428af34f352020-11-24T23:59:44ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-12-0117147851481010.5194/acp-17-14785-2017Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon regionD. S. Moreira0D. S. Moreira1K. M. Longo2K. M. Longo3S. R. Freitas4S. R. Freitas5M. A. Yamasoe6L. M. Mercado7L. M. Mercado8N. E. Rosário9E. Gloor10R. S. M. Viana11J. B. Miller12L. V. Gatti13L. V. Gatti14K. T. Wiedemann15L. K. G. Domingues16L. K. G. Domingues17C. C. S. Correia18C. C. S. Correia19Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru, SP, BrazilCentro de Meteorologia de Bauru (IPMet), Bauru, SP, BrazilCentro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP, Brazilnow at: Universities Space Research Association/Goddard Earth Sciences Technology and Research (USRA/GESTAR), Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USACentro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP, Brazilnow at: Universities Space Research Association/Goddard Earth Sciences Technology and Research (USRA/GESTAR), Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USADepartamento de Ciências Atmosféricas do Institudo de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo (USP), São Paulo, SP, BrazilGeography, College of Life and Environmental Sciences, University of Exeter, Exeter, UKCentre for Ecology and Hydrology (CEH), Wallingford, UKUniversidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, BrazilSchool of Geography, University of Leeds, Woodhouse Lane, Leeds, UKDepartamento de Matemática, Universidade Federal de Viçosa (UFV), Viçosa, MG, BrazilGlobal Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305, USACentro de Ciências do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, BrazilInstituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear (CNEN), São Paulo, BrazilDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USACentro de Ciências do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, BrazilInstituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear (CNEN), São Paulo, BrazilCentro de Ciências do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, BrazilInstituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear (CNEN), São Paulo, BrazilEvery year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO<sub>2</sub> fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO<sub>2</sub> fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO<sub>2</sub> fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO<sub>2</sub> to the atmosphere.https://www.atmos-chem-phys.net/17/14785/2017/acp-17-14785-2017.pdf