Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets
Introduction There is widespread enthusiasm to improve health through the application of artificial intelligence and machine learning (AI/ML) methods to large population-level health datasets. Achieving this may require successful collaboration between institutions as well as between computer scien...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Swansea University
2020-12-01
|
Series: | International Journal of Population Data Science |
Online Access: | https://ijpds.org/article/view/1529 |
id |
doaj-5f7f248723314166a1bd5e6885fc43ce |
---|---|
record_format |
Article |
spelling |
doaj-5f7f248723314166a1bd5e6885fc43ce2021-02-10T16:42:38ZengSwansea UniversityInternational Journal of Population Data Science2399-49082020-12-015510.23889/ijpds.v5i5.1529Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health DatasetsMichael Schull0Michael Brudno1Marzyeh Ghassemi2Garth Gibson3Anna Goldenberg4P. Alison Paprica5Laura Rosella6Thérèse Stukel7J. Charles Victor8Carl Virtanen9ICES, Toronto, ON, CanadaHPC4Health, Hospital for Sick Children, Toronto, ON, CanadaVector Institute for Artificial Intelligence, Toronto, ON, CanadaVector Institute for Artificial Intelligence, Toronto, ON, CanadaVector Institute for Artificial Intelligence, Toronto, ON, CanadaIHPME, University of Toronto, and ICES, Toronto, ON, CanadaDalla Lana School of Public Health, University of Toronto and ICES, Toronto, ON, CanadaDalla Lana School of Public Health, University of Toronto and ICES, Toronto, ON, CanadaICES, Toronto, ON, CanadaICES, Toronto, ON, Canada Introduction There is widespread enthusiasm to improve health through the application of artificial intelligence and machine learning (AI/ML) methods to large population-level health datasets. Achieving this may require successful collaboration between institutions as well as between computer scientists (CS), machine learning researchers (MLR) and health service researchers (HSR). The objective is to describe lessons learned in creating the Health Artificial Data and Analysis Platform (HAIDAP) in Ontario, Canada. Objectives and Approach A partnership between a HSR institute (ICES), an AI/ML institute (Vector) and a high-performance computing center (HPC4H) was initiated in 2017 to enable the application of AI/ML methods to population-level health data for the province of Ontario (population 14M). The HAIDAP was launched in 2019. We describe lessons learned (and being learned) following the HAIDAP’s launch. Results Major learnings include: 1)importance of institutional partnerships and alignment with institutional strategies; 2)potential of joint institutional risk-sharing models; 3)need for scientific collaborations bridging disciplines around joint research projects; 4)sensitivity to different scientific cultures (e.g., academic prestige of conference proceedings for MLR vs journal publications for HSR; traditional statistical vs. ML model assumptions); 5)differences in research timeline expectations; 6)different experience with and expectations for access to de-identified routinely collected data (e.g., need for research ethics committee project approvals and privacy impact assessments); 7)developing data access models that enable greater flexibility (e.g. importing code or using open source tools); 8) broadening data access models to allow modern high-dimensional exploratory data analysis; 9)obtaining support of information/privacy regulator; 10)hardware is (relatively) easy part compared to other success factors. Conclusion / Implications The HAIDAP has enabled multi-disciplinary collaborations and novel AI/ML research of Ontario’s population-level health data. Collectively we have learned that additional effort is required to develop systems and processes enabling more efficient access to data and analytic tools for the analysis of administrative health data. https://ijpds.org/article/view/1529 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michael Schull Michael Brudno Marzyeh Ghassemi Garth Gibson Anna Goldenberg P. Alison Paprica Laura Rosella Thérèse Stukel J. Charles Victor Carl Virtanen |
spellingShingle |
Michael Schull Michael Brudno Marzyeh Ghassemi Garth Gibson Anna Goldenberg P. Alison Paprica Laura Rosella Thérèse Stukel J. Charles Victor Carl Virtanen Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets International Journal of Population Data Science |
author_facet |
Michael Schull Michael Brudno Marzyeh Ghassemi Garth Gibson Anna Goldenberg P. Alison Paprica Laura Rosella Thérèse Stukel J. Charles Victor Carl Virtanen |
author_sort |
Michael Schull |
title |
Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets |
title_short |
Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets |
title_full |
Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets |
title_fullStr |
Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets |
title_full_unstemmed |
Building A Research Partnership Between Computer Scientists and Health Service Researchers for Access and Analysis of Population-Level Health Datasets |
title_sort |
building a research partnership between computer scientists and health service researchers for access and analysis of population-level health datasets |
publisher |
Swansea University |
series |
International Journal of Population Data Science |
issn |
2399-4908 |
publishDate |
2020-12-01 |
description |
Introduction
There is widespread enthusiasm to improve health through the application of artificial intelligence and machine learning (AI/ML) methods to large population-level health datasets. Achieving this may require successful collaboration between institutions as well as between computer scientists (CS), machine learning researchers (MLR) and health service researchers (HSR). The objective is to describe lessons learned in creating the Health Artificial Data and Analysis Platform (HAIDAP) in Ontario, Canada.
Objectives and Approach
A partnership between a HSR institute (ICES), an AI/ML institute (Vector) and a high-performance computing center (HPC4H) was initiated in 2017 to enable the application of AI/ML methods to population-level health data for the province of Ontario (population 14M). The HAIDAP was launched in 2019. We describe lessons learned (and being learned) following the HAIDAP’s launch.
Results
Major learnings include: 1)importance of institutional partnerships and alignment with institutional strategies; 2)potential of joint institutional risk-sharing models; 3)need for scientific collaborations bridging disciplines around joint research projects; 4)sensitivity to different scientific cultures (e.g., academic prestige of conference proceedings for MLR vs journal publications for HSR; traditional statistical vs. ML model assumptions); 5)differences in research timeline expectations; 6)different experience with and expectations for access to de-identified routinely collected data (e.g., need for research ethics committee project approvals and privacy impact assessments); 7)developing data access models that enable greater flexibility (e.g. importing code or using open source tools); 8) broadening data access models to allow modern high-dimensional exploratory data analysis; 9)obtaining support of information/privacy regulator; 10)hardware is (relatively) easy part compared to other success factors.
Conclusion / Implications
The HAIDAP has enabled multi-disciplinary collaborations and novel AI/ML research of Ontario’s population-level health data. Collectively we have learned that additional effort is required to develop systems and processes enabling more efficient access to data and analytic tools for the analysis of administrative health data.
|
url |
https://ijpds.org/article/view/1529 |
work_keys_str_mv |
AT michaelschull buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT michaelbrudno buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT marzyehghassemi buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT garthgibson buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT annagoldenberg buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT palisonpaprica buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT laurarosella buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT theresestukel buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT jcharlesvictor buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets AT carlvirtanen buildingaresearchpartnershipbetweencomputerscientistsandhealthserviceresearchersforaccessandanalysisofpopulationlevelhealthdatasets |
_version_ |
1724275169638219776 |