Assessing spacing impact on coherent features in a wind turbine array boundary layer
As wind farms become larger, the spacing between turbines becomes a significant design consideration that can impose serious economic constraints. To investigate the turbulent flow structures in a 4 × 3 Cartesian wind turbine array boundary layer (WTABL), a wind tunnel experiment was carried out...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-02-01
|
Series: | Wind Energy Science |
Online Access: | https://www.wind-energ-sci.net/3/43/2018/wes-3-43-2018.pdf |
id |
doaj-5f776ac9bfb74b7c99e708e3cb4be1c8 |
---|---|
record_format |
Article |
spelling |
doaj-5f776ac9bfb74b7c99e708e3cb4be1c82020-11-24T20:56:58ZengCopernicus PublicationsWind Energy Science2366-74432366-74512018-02-013435610.5194/wes-3-43-2018Assessing spacing impact on coherent features in a wind turbine array boundary layerN. Ali0N. Hamilton1D. DeLucia2R. Bayoán Cal3Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, USANational Renewable Energy Laboratory, Boulder, Colorado 80401, USADepartment of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, USADepartment of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, USAAs wind farms become larger, the spacing between turbines becomes a significant design consideration that can impose serious economic constraints. To investigate the turbulent flow structures in a 4 × 3 Cartesian wind turbine array boundary layer (WTABL), a wind tunnel experiment was carried out parameterizing the streamwise and spanwise wind turbine spacing. Four cases are chosen spacing turbines by 6 or 3<i>D</i> in the streamwise direction, and 3 or 1.5<i>D</i> in the spanwise direction, where <i>D</i> = 12 cm is the rotor diameter. Data are obtained experimentally using stereo particle image velocimetry. Mean streamwise velocity showed maximum values upstream of the turbine with the spacing of 6 and 3<i>D</i> in the streamwise and spanwise direction, respectively. Fixing the spanwise turbine spacing to 3<i>D</i>, variations in the streamwise spacing influence the turbulent flow structure and the power available to following wind turbines. Quantitative comparisons are made through spatial averaging, shifting measurement data and interpolating to account for the full range between devices to obtain data independent of array spacing. The largest averaged Reynolds stress is seen in cases with spacing of 3<i>D</i> × 3<i>D</i>. Snapshot proper orthogonal decomposition (POD) was employed to identify the flow structures based on the turbulence kinetic energy content. The maximum turbulence kinetic energy content in the first POD mode is seen for turbine spacing of 6<i>D</i> × 1.5<i>D</i>. The flow upstream of each wind turbine converges faster than the flow downstream according to accumulation of turbulence kinetic energy by POD modes, regardless of spacing. The streamwise-averaged profile of the Reynolds stress is reconstructed using a specific number of modes for each case; the case of 6<i>D</i> × 1.5<i>D</i> spacing shows the fastest reconstruction to compare the rate of reconstruction of statistical profiles. Intermediate modes are also used to reconstruct the averaged profile and show that the intermediate scales are responsible for features seen in the original profile. The variation in streamwise and spanwise spacing leads to changes in the background structure of the turbulence, where the color map based on barycentric map and Reynolds stress anisotropy tensor provides an alternate perspective on the nature of the perturbations within the wind turbine array. The impact of the streamwise and spanwise spacings on power produced is quantified, where the maximum production corresponds with the case of greatest turbine spacing.https://www.wind-energ-sci.net/3/43/2018/wes-3-43-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
N. Ali N. Hamilton D. DeLucia R. Bayoán Cal |
spellingShingle |
N. Ali N. Hamilton D. DeLucia R. Bayoán Cal Assessing spacing impact on coherent features in a wind turbine array boundary layer Wind Energy Science |
author_facet |
N. Ali N. Hamilton D. DeLucia R. Bayoán Cal |
author_sort |
N. Ali |
title |
Assessing spacing impact on coherent features in a wind turbine array boundary layer |
title_short |
Assessing spacing impact on coherent features in a wind turbine array boundary layer |
title_full |
Assessing spacing impact on coherent features in a wind turbine array boundary layer |
title_fullStr |
Assessing spacing impact on coherent features in a wind turbine array boundary layer |
title_full_unstemmed |
Assessing spacing impact on coherent features in a wind turbine array boundary layer |
title_sort |
assessing spacing impact on coherent features in a wind turbine array boundary layer |
publisher |
Copernicus Publications |
series |
Wind Energy Science |
issn |
2366-7443 2366-7451 |
publishDate |
2018-02-01 |
description |
As wind farms become larger, the spacing between turbines
becomes a significant design consideration that can impose serious economic
constraints. To investigate the turbulent flow structures in a 4 × 3
Cartesian wind turbine array boundary layer (WTABL), a wind tunnel experiment was carried out
parameterizing the streamwise and spanwise wind turbine spacing. Four cases
are chosen spacing turbines by 6 or 3<i>D</i> in the streamwise direction, and
3 or 1.5<i>D</i> in the spanwise direction, where <i>D</i> = 12 cm is the rotor
diameter. Data are obtained experimentally using stereo particle image
velocimetry. Mean streamwise velocity showed maximum values upstream of the
turbine with the spacing of 6 and 3<i>D</i> in the streamwise and spanwise
direction, respectively. Fixing the spanwise turbine spacing to 3<i>D</i>,
variations in the streamwise spacing influence the turbulent flow structure
and the power available to following wind turbines. Quantitative comparisons
are made through spatial averaging, shifting measurement data and
interpolating to account for the full range between devices to obtain data
independent of array spacing. The largest averaged Reynolds stress is seen in
cases with spacing of 3<i>D</i> × 3<i>D</i>. Snapshot proper orthogonal
decomposition (POD) was employed to identify the flow structures based on the
turbulence kinetic energy content. The maximum turbulence kinetic energy
content in the first POD mode is seen for turbine spacing of 6<i>D</i> × 1.5<i>D</i>.
The flow upstream of each wind turbine converges faster than the flow
downstream according to accumulation of turbulence kinetic energy by POD
modes, regardless of spacing. The streamwise-averaged profile of the Reynolds
stress is reconstructed using a specific number of modes for each case; the
case of 6<i>D</i> × 1.5<i>D</i> spacing shows the fastest
reconstruction to compare the rate of
reconstruction of statistical profiles. Intermediate modes are also used to
reconstruct the averaged profile and show that the intermediate scales are
responsible for features seen in the original profile. The variation in
streamwise and spanwise spacing leads to changes in the background structure
of the turbulence, where the color map based on barycentric map and Reynolds
stress anisotropy tensor provides an alternate perspective on the nature of
the perturbations within the wind turbine array. The impact of the streamwise
and spanwise spacings on power produced is quantified, where the maximum
production corresponds with the case of greatest turbine spacing. |
url |
https://www.wind-energ-sci.net/3/43/2018/wes-3-43-2018.pdf |
work_keys_str_mv |
AT nali assessingspacingimpactoncoherentfeaturesinawindturbinearrayboundarylayer AT nhamilton assessingspacingimpactoncoherentfeaturesinawindturbinearrayboundarylayer AT ddelucia assessingspacingimpactoncoherentfeaturesinawindturbinearrayboundarylayer AT rbayoancal assessingspacingimpactoncoherentfeaturesinawindturbinearrayboundarylayer |
_version_ |
1716789253433720832 |