Summary: | There we made available information about the effects of the adenine nucleotide translocase (ANT) ‘c’ conformation fixers (phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside) as well as thiol reagent (4,4′-diisothiocyanostilbene-2,2′-disulfonate (DIDS)) on isolated rat liver mitochondria. We observed a decrease in A540 (mitochondrial swelling) and respiratory control rates (RCRADP [state 3/state 4] and RCRDNP [2,4-dinitrophenol-uncoupled state/basal state or state 4]), as well as an increase in Ca2+-induced safranin fluorescence (F485/590, arbitrary units), showed a dissipation in the inner membrane potential (ΔΨmito), in experiments with energized rat liver mitochondria, injected into the buffer containing 25–75 mM TlNO3, 125 mM KNO3, and 100 µM Ca2+. The fixers and DIDS, in comparison to Ca2+ alone, greatly increased A540 decline and the rate of Ca2+-induced ΔΨmito dissipation. These reagents also markedly decreased RCRADP and RCRDNP. The MPTP inhibitors (ADP, cyclosporin A, bongkrekic acid, and N-ethylmaleimide) fixing the ANT in ‘m’ conformation significantly hindered the above-mentioned effects of the fixers and DIDS. A more complete scientific analysis of these findings may be obtained from the manuscript “To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria” (Korotkov et al., 2016 [1]). Keywords: Tl+, Ca2+, Oxygen consumption assay, Mitochondrial swelling, Mitochondrial membrane potential, Rat liver mitochondria
|