Summary: | In order to enable Social Internet of Vehicles devices to achieve the purpose of intelligent and autonomous garbage classification in a public environment, while avoiding network congestion caused by a large amount of data accessing the cloud at the same time, it is therefore considered to combine mobile edge computing with Social Internet of Vehicles to give full play to mobile edge computing features of high bandwidth and low latency. At the same time, based on cutting-edge technologies such as deep learning, knowledge graph, and 5G transmission, the paper builds an intelligent garbage sorting system based on edge computing and visual understanding of Social Internet of Vehicles. First of all, for the massive multisource heterogeneous Social Internet of Vehicles big data in the public environment, different item modal data adopts different processing methods, aiming to obtain a visual understanding model. Secondly, using the 5G network, the model is deployed on the edge device and the cloud for cloud-side collaborative management, aiming to avoid the waste of edge node resources, while ensuring the data privacy of the edge node. Finally, the Social Internet of Vehicles devices is used to make intelligent decision-making on the big data of the items. First, the items are judged as garbage, and then the category is judged, and finally the task of grabbing and sorting is realized. The experimental results show that the system proposed in this paper can efficiently process the big data of Social Internet of Vehicles and make valuable intelligent decisions. At the same time, it also has a certain role in promoting the promotion of Social Internet of Vehicles devices.
|