Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
We present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A no...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/17/5788 |
id |
doaj-5f3c1fa13a1d4794b243e993a39076a7 |
---|---|
record_format |
Article |
spelling |
doaj-5f3c1fa13a1d4794b243e993a39076a72021-09-09T13:56:13ZengMDPI AGSensors1424-82202021-08-01215788578810.3390/s21175788Investigation and Mitigation of Noise Contributions in a Compact Heterodyne InterferometerYanqi Zhang0Adam S. Hines1Guillermo Valdes2Felipe Guzman3Department of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USADepartment of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USADepartment of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USADepartment of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USAWe present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A noise floor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.31</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> is achieved after applying our noise subtraction algorithm to a benchtop prototype interferometer that showed a noise level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.76</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> when tested in vacuum at levels of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> Torr. Based on the previous results, we investigated noise estimation and subtraction techniques of non-linear optical pathlength noise, laser frequency noise, and temperature fluctuations in heterodyne laser interferometers. For each noise source, we identified its contribution and removed it from the measurement by linear fitting or a spectral analysis algorithm. The noise correction algorithm we present in this article can be generally applied to heterodyne laser interferometers.https://www.mdpi.com/1424-8220/21/17/5788heterodyne laser interferometerdisplacement measuring interferometry (DMI)inertial sensingnoise subtraction |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yanqi Zhang Adam S. Hines Guillermo Valdes Felipe Guzman |
spellingShingle |
Yanqi Zhang Adam S. Hines Guillermo Valdes Felipe Guzman Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer Sensors heterodyne laser interferometer displacement measuring interferometry (DMI) inertial sensing noise subtraction |
author_facet |
Yanqi Zhang Adam S. Hines Guillermo Valdes Felipe Guzman |
author_sort |
Yanqi Zhang |
title |
Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer |
title_short |
Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer |
title_full |
Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer |
title_fullStr |
Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer |
title_full_unstemmed |
Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer |
title_sort |
investigation and mitigation of noise contributions in a compact heterodyne interferometer |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2021-08-01 |
description |
We present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A noise floor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.31</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> is achieved after applying our noise subtraction algorithm to a benchtop prototype interferometer that showed a noise level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.76</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> when tested in vacuum at levels of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> Torr. Based on the previous results, we investigated noise estimation and subtraction techniques of non-linear optical pathlength noise, laser frequency noise, and temperature fluctuations in heterodyne laser interferometers. For each noise source, we identified its contribution and removed it from the measurement by linear fitting or a spectral analysis algorithm. The noise correction algorithm we present in this article can be generally applied to heterodyne laser interferometers. |
topic |
heterodyne laser interferometer displacement measuring interferometry (DMI) inertial sensing noise subtraction |
url |
https://www.mdpi.com/1424-8220/21/17/5788 |
work_keys_str_mv |
AT yanqizhang investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer AT adamshines investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer AT guillermovaldes investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer AT felipeguzman investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer |
_version_ |
1717759401808363520 |