Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer

We present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A no...

Full description

Bibliographic Details
Main Authors: Yanqi Zhang, Adam S. Hines, Guillermo Valdes, Felipe Guzman
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/17/5788
id doaj-5f3c1fa13a1d4794b243e993a39076a7
record_format Article
spelling doaj-5f3c1fa13a1d4794b243e993a39076a72021-09-09T13:56:13ZengMDPI AGSensors1424-82202021-08-01215788578810.3390/s21175788Investigation and Mitigation of Noise Contributions in a Compact Heterodyne InterferometerYanqi Zhang0Adam S. Hines1Guillermo Valdes2Felipe Guzman3Department of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USADepartment of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USADepartment of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USADepartment of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Bldg., College Station, TX 77843, USAWe present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A noise floor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.31</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> is achieved after applying our noise subtraction algorithm to a benchtop prototype interferometer that showed a noise level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.76</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> when tested in vacuum at levels of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> Torr. Based on the previous results, we investigated noise estimation and subtraction techniques of non-linear optical pathlength noise, laser frequency noise, and temperature fluctuations in heterodyne laser interferometers. For each noise source, we identified its contribution and removed it from the measurement by linear fitting or a spectral analysis algorithm. The noise correction algorithm we present in this article can be generally applied to heterodyne laser interferometers.https://www.mdpi.com/1424-8220/21/17/5788heterodyne laser interferometerdisplacement measuring interferometry (DMI)inertial sensingnoise subtraction
collection DOAJ
language English
format Article
sources DOAJ
author Yanqi Zhang
Adam S. Hines
Guillermo Valdes
Felipe Guzman
spellingShingle Yanqi Zhang
Adam S. Hines
Guillermo Valdes
Felipe Guzman
Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
Sensors
heterodyne laser interferometer
displacement measuring interferometry (DMI)
inertial sensing
noise subtraction
author_facet Yanqi Zhang
Adam S. Hines
Guillermo Valdes
Felipe Guzman
author_sort Yanqi Zhang
title Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
title_short Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
title_full Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
title_fullStr Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
title_full_unstemmed Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer
title_sort investigation and mitigation of noise contributions in a compact heterodyne interferometer
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-08-01
description We present a noise estimation and subtraction algorithm capable of increasing the sensitivity of heterodyne laser interferometers by one order of magnitude. The heterodyne interferometer is specially designed for dynamic measurements of a test mass in the application of sub-Hz inertial sensing. A noise floor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.31</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> is achieved after applying our noise subtraction algorithm to a benchtop prototype interferometer that showed a noise level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.76</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>Hz</mi></msqrt></semantics></math></inline-formula> at 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Hz</mi></semantics></math></inline-formula> when tested in vacuum at levels of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> Torr. Based on the previous results, we investigated noise estimation and subtraction techniques of non-linear optical pathlength noise, laser frequency noise, and temperature fluctuations in heterodyne laser interferometers. For each noise source, we identified its contribution and removed it from the measurement by linear fitting or a spectral analysis algorithm. The noise correction algorithm we present in this article can be generally applied to heterodyne laser interferometers.
topic heterodyne laser interferometer
displacement measuring interferometry (DMI)
inertial sensing
noise subtraction
url https://www.mdpi.com/1424-8220/21/17/5788
work_keys_str_mv AT yanqizhang investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer
AT adamshines investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer
AT guillermovaldes investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer
AT felipeguzman investigationandmitigationofnoisecontributionsinacompactheterodyneinterferometer
_version_ 1717759401808363520