Neural heterogeneity promotes robust learning

The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.

Bibliographic Details
Main Authors: Nicolas Perez-Nieves, Vincent C. H. Leung, Pier Luigi Dragotti, Dan F. M. Goodman
Format: Article
Language:English
Published: Nature Publishing Group 2021-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-26022-3
id doaj-5f3aee1234744188899e09099851da31
record_format Article
spelling doaj-5f3aee1234744188899e09099851da312021-10-10T11:45:03ZengNature Publishing GroupNature Communications2041-17232021-10-011211910.1038/s41467-021-26022-3Neural heterogeneity promotes robust learningNicolas Perez-Nieves0Vincent C. H. Leung1Pier Luigi Dragotti2Dan F. M. Goodman3Department of Electrical and Electronic Engineering, Imperial College LondonDepartment of Electrical and Electronic Engineering, Imperial College LondonDepartment of Electrical and Electronic Engineering, Imperial College LondonDepartment of Electrical and Electronic Engineering, Imperial College LondonThe authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.https://doi.org/10.1038/s41467-021-26022-3
collection DOAJ
language English
format Article
sources DOAJ
author Nicolas Perez-Nieves
Vincent C. H. Leung
Pier Luigi Dragotti
Dan F. M. Goodman
spellingShingle Nicolas Perez-Nieves
Vincent C. H. Leung
Pier Luigi Dragotti
Dan F. M. Goodman
Neural heterogeneity promotes robust learning
Nature Communications
author_facet Nicolas Perez-Nieves
Vincent C. H. Leung
Pier Luigi Dragotti
Dan F. M. Goodman
author_sort Nicolas Perez-Nieves
title Neural heterogeneity promotes robust learning
title_short Neural heterogeneity promotes robust learning
title_full Neural heterogeneity promotes robust learning
title_fullStr Neural heterogeneity promotes robust learning
title_full_unstemmed Neural heterogeneity promotes robust learning
title_sort neural heterogeneity promotes robust learning
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-10-01
description The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.
url https://doi.org/10.1038/s41467-021-26022-3
work_keys_str_mv AT nicolaspereznieves neuralheterogeneitypromotesrobustlearning
AT vincentchleung neuralheterogeneitypromotesrobustlearning
AT pierluigidragotti neuralheterogeneitypromotesrobustlearning
AT danfmgoodman neuralheterogeneitypromotesrobustlearning
_version_ 1716829590991667200