PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF

Poisson regression is the most popular tool for modeling the relationship between a discrete data in the response variable and a set of predictors with continue, discrete, categoric or mix data. Response variable with discrete data, however, may overdispersed or underdispersed, not conductive to Poi...

Full description

Bibliographic Details
Main Authors: Rio Tongaril Simarmata, Dwi Ispriyanti
Format: Article
Language:English
Published: Universitas Diponegoro 2011-12-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2470
id doaj-5f3a9cfd0f8c47bd86304b0330b2ce1f
record_format Article
spelling doaj-5f3a9cfd0f8c47bd86304b0330b2ce1f2020-11-25T03:43:25ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472011-12-01429510410.14710/medstat.4.2.95-1042133PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIFRio Tongaril SimarmataDwi IspriyantiPoisson regression is the most popular tool for modeling the relationship between a discrete data in the response variable and a set of predictors with continue, discrete, categoric or mix data. Response variable with discrete data, however, may overdispersed or underdispersed, not conductive to Poisson regression which assumed that the mean value equals to variance  (equidispersed). One of the model that be used to overdispersed the discrete data is a regression model based on mixture distribution namely Poisson-gamma mixture which result negative binomial distribution. This regression model usually known as binomial negative regression. Using Generalized Linier Model (GLM) approach, the given model, parameter estimate, diagnostics, and interpretation of negative binomial regression can be determined.   Keyword: Negative Binomial Distribution, Dispersion, Generalized Linier Modelhttps://ejournal.undip.ac.id/index.php/media_statistika/article/view/2470
collection DOAJ
language English
format Article
sources DOAJ
author Rio Tongaril Simarmata
Dwi Ispriyanti
spellingShingle Rio Tongaril Simarmata
Dwi Ispriyanti
PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
Media Statistika
author_facet Rio Tongaril Simarmata
Dwi Ispriyanti
author_sort Rio Tongaril Simarmata
title PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
title_short PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
title_full PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
title_fullStr PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
title_full_unstemmed PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF
title_sort penanganan overdispersi pada model regresi poisson menggunakan model regresi binomial negatif
publisher Universitas Diponegoro
series Media Statistika
issn 1979-3693
2477-0647
publishDate 2011-12-01
description Poisson regression is the most popular tool for modeling the relationship between a discrete data in the response variable and a set of predictors with continue, discrete, categoric or mix data. Response variable with discrete data, however, may overdispersed or underdispersed, not conductive to Poisson regression which assumed that the mean value equals to variance  (equidispersed). One of the model that be used to overdispersed the discrete data is a regression model based on mixture distribution namely Poisson-gamma mixture which result negative binomial distribution. This regression model usually known as binomial negative regression. Using Generalized Linier Model (GLM) approach, the given model, parameter estimate, diagnostics, and interpretation of negative binomial regression can be determined.   Keyword: Negative Binomial Distribution, Dispersion, Generalized Linier Model
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2470
work_keys_str_mv AT riotongarilsimarmata penangananoverdispersipadamodelregresipoissonmenggunakanmodelregresibinomialnegatif
AT dwiispriyanti penangananoverdispersipadamodelregresipoissonmenggunakanmodelregresibinomialnegatif
_version_ 1724520027376320512