Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation
<p>Abstract</p> <p>Background</p> <p>A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as <it>Klebsiella oxytoca</it>. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-11-01
|
Series: | Microbial Cell Factories |
Online Access: | http://www.microbialcellfactories.com/content/11/1/152 |
id |
doaj-5f37d3f816b34c8a9e06fb89049932ff |
---|---|
record_format |
Article |
spelling |
doaj-5f37d3f816b34c8a9e06fb89049932ff2020-11-24T21:09:56ZengBMCMicrobial Cell Factories1475-28592012-11-0111115210.1186/1475-2859-11-152Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentationGallo GiuseppeBaldi FrancoRenzone GiovanniGallo MicheleCordaro AntonioScaloni AndreaPuglia Anna<p>Abstract</p> <p>Background</p> <p>A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as <it>Klebsiella oxytoca</it>. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO<sub>2</sub> coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant.</p> <p>Results</p> <p>Further phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to <it>K. oxytoca</it> species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production.</p> <p>Conclusion</p> <p>Differential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains.</p> http://www.microbialcellfactories.com/content/11/1/152 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gallo Giuseppe Baldi Franco Renzone Giovanni Gallo Michele Cordaro Antonio Scaloni Andrea Puglia Anna |
spellingShingle |
Gallo Giuseppe Baldi Franco Renzone Giovanni Gallo Michele Cordaro Antonio Scaloni Andrea Puglia Anna Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation Microbial Cell Factories |
author_facet |
Gallo Giuseppe Baldi Franco Renzone Giovanni Gallo Michele Cordaro Antonio Scaloni Andrea Puglia Anna |
author_sort |
Gallo Giuseppe |
title |
Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation |
title_short |
Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation |
title_full |
Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation |
title_fullStr |
Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation |
title_full_unstemmed |
Adaptative biochemical pathways and regulatory networks in <it>Klebsiella oxytoca</it> BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation |
title_sort |
adaptative biochemical pathways and regulatory networks in <it>klebsiella oxytoca</it> bas-10 producing a biotechnologically relevant exopolysaccharide during fe(iii)-citrate fermentation |
publisher |
BMC |
series |
Microbial Cell Factories |
issn |
1475-2859 |
publishDate |
2012-11-01 |
description |
<p>Abstract</p> <p>Background</p> <p>A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as <it>Klebsiella oxytoca</it>. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO<sub>2</sub> coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant.</p> <p>Results</p> <p>Further phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to <it>K. oxytoca</it> species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production.</p> <p>Conclusion</p> <p>Differential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains.</p> |
url |
http://www.microbialcellfactories.com/content/11/1/152 |
work_keys_str_mv |
AT gallogiuseppe adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation AT baldifranco adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation AT renzonegiovanni adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation AT gallomichele adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation AT cordaroantonio adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation AT scaloniandrea adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation AT pugliaanna adaptativebiochemicalpathwaysandregulatorynetworksinitklebsiellaoxytocaitbas10producingabiotechnologicallyrelevantexopolysaccharideduringfeiiicitratefermentation |
_version_ |
1716757001492496384 |