Existence and uniqueness of solutions for coupled system of fractional differential equations involving proportional delay by means of topological degree theory

Abstract In this manuscript, we obtain sufficient conditions required for the existence of solution to the following coupled system of nonlinear fractional order differential equations: D γ ω ( ℓ ) = F ( ℓ , ω ( λ ℓ ) , υ ( λ ℓ ) ) , D δ υ ( ℓ ) = F ‾ ( ℓ , ω ( λ ℓ ) , υ ( λ ℓ ) ) , $$ \begin{gather...

Full description

Bibliographic Details
Main Authors: Anwar Ali, Muhammad Sarwar, Mian Bahadur Zada, Thabet Abdeljawad
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-02918-0
Description
Summary:Abstract In this manuscript, we obtain sufficient conditions required for the existence of solution to the following coupled system of nonlinear fractional order differential equations: D γ ω ( ℓ ) = F ( ℓ , ω ( λ ℓ ) , υ ( λ ℓ ) ) , D δ υ ( ℓ ) = F ‾ ( ℓ , ω ( λ ℓ ) , υ ( λ ℓ ) ) , $$ \begin{gathered} D^{\gamma}\omega(\ell)= \mathcal{F} \bigl( \ell,\omega(\lambda\ell), \upsilon(\lambda\ell) \bigr), \\ D^{\delta}\upsilon(\ell)=\mathcal{\overline{F}} \bigl(\ell,\omega ( \lambda\ell), \upsilon(\lambda\ell) \bigr), \end{gathered} $$ with fractional integral boundary conditions a 1 ω ( 0 ) − b 1 ω ( η ) − c 1 ω ( 1 ) = 1 Γ ( γ ) ∫ 0 1 ( 1 − ρ ) γ − 1 ϕ ( ρ , ω ( ρ ) ) d ρ and a 2 υ ( 0 ) − b 2 υ ( ξ ) − c 2 υ ( 1 ) = 1 Γ ( δ ) ∫ 0 1 ( 1 − ρ ) δ − 1 ψ ( ρ , υ ( ρ ) ) d ρ , $$ \begin{gathered} \mathfrak{a}_{1}\omega(0)- \mathfrak{b}_{1}\omega(\eta)-\mathfrak {c}_{1}\omega(1)= \frac{1}{\varGamma(\gamma)} \int_{0}^{1}(1-\rho )^{\gamma-1} \phi \bigl( \rho, \omega(\rho) \bigr)\, d\rho\quad\text{and} \\ \mathfrak{a}_{2}\upsilon(0)-\mathfrak{b}_{2} \upsilon (\xi)-\mathfrak{c}_{2}\upsilon(1)=\frac{1}{\varGamma(\delta)} \int _{0}^{1}(1-\rho)^{\delta-1} \psi \bigl( \rho, \upsilon(\rho) \bigr) \,d\rho, \end{gathered} $$ where ℓ ∈ Z = [ 0 , 1 ] $\ell\in\mathfrak{Z}=[0,1]$ , γ , δ ∈ ( 0 , 1 ] $\gamma, \delta\in(0,1]$ , 0 < λ < 1 $0<\lambda<1$ , D denotes the Caputo fractional derivative (in short CFD), F , F ‾ : Z × R × R → R $\mathcal{F}, \mathcal{\overline{F}}: \mathfrak{Z}\times \mathfrak{R}\times\mathfrak{R} \rightarrow\mathfrak{R}$ and ϕ , ψ : Z × R → R $\phi , \psi:\mathfrak{Z}\times\mathfrak{R}\rightarrow\mathfrak{R}$ are continuous functions. The parameters η, ξ are such that 0 < η , ξ < 1 $0<\eta, \xi<1$ , and a i , b i , c i $\mathfrak{a}_{i}, \mathfrak{b}_{i}, \mathfrak {c}_{i}$ ( i = 1 , 2 $i=1, 2$ ) are real numbers with a i ≠ b i + c i $\mathfrak{a}_{i}\neq\mathfrak {b}_{i}+\mathfrak{c}_{i}$ ( i = 1 , 2 $i=1, 2$ ). Using topological degree theory, sufficient results are constructed for the existence of at least one and unique solution to the concerned problem. For the validity of our result, an appropriate example is presented in the end.
ISSN:1687-1847