The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
Background & Aims: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostas...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-01-01
|
Series: | Cellular and Molecular Gastroenterology and Hepatology |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352345X19301432 |
id |
doaj-5f0b0c73c00e4cd0a7d97071ba0d863b |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Silvia Elena Molina-Castro Camille Tiffon Julie Giraud Hélène Boeuf Elodie Sifre Alban Giese Geneviève Belleannée Philippe Lehours Emilie Bessède Francis Mégraud Pierre Dubus Cathy Staedel Christine Varon |
spellingShingle |
Silvia Elena Molina-Castro Camille Tiffon Julie Giraud Hélène Boeuf Elodie Sifre Alban Giese Geneviève Belleannée Philippe Lehours Emilie Bessède Francis Mégraud Pierre Dubus Cathy Staedel Christine Varon The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary Cellular and Molecular Gastroenterology and Hepatology |
author_facet |
Silvia Elena Molina-Castro Camille Tiffon Julie Giraud Hélène Boeuf Elodie Sifre Alban Giese Geneviève Belleannée Philippe Lehours Emilie Bessède Francis Mégraud Pierre Dubus Cathy Staedel Christine Varon |
author_sort |
Silvia Elena Molina-Castro |
title |
The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary |
title_short |
The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary |
title_full |
The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary |
title_fullStr |
The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary |
title_full_unstemmed |
The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary |
title_sort |
hippo kinase lats2 controls helicobacter pylori-induced epithelial-mesenchymal transition and intestinal metaplasia in gastric mucosasummary |
publisher |
Elsevier |
series |
Cellular and Molecular Gastroenterology and Hepatology |
issn |
2352-345X |
publishDate |
2020-01-01 |
description |
Background & Aims: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. Methods: Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. Results: LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other’s expression. Loss-of-function experiments showed that LATS2 restricts H pylori–induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori–induced preneoplastic changes. Conclusions: H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host–pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development. Keywords: YAP1, Epithelial-to-Mesenchymal Transition, Adenocarcinoma, CagA |
url |
http://www.sciencedirect.com/science/article/pii/S2352345X19301432 |
work_keys_str_mv |
AT silviaelenamolinacastro thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT camilletiffon thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT juliegiraud thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT heleneboeuf thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT elodiesifre thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT albangiese thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT genevievebelleannee thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT philippelehours thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT emiliebessede thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT francismegraud thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT pierredubus thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT cathystaedel thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT christinevaron thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT silviaelenamolinacastro hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT camilletiffon hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT juliegiraud hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT heleneboeuf hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT elodiesifre hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT albangiese hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT genevievebelleannee hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT philippelehours hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT emiliebessede hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT francismegraud hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT pierredubus hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT cathystaedel hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary AT christinevaron hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary |
_version_ |
1725852309492072448 |
spelling |
doaj-5f0b0c73c00e4cd0a7d97071ba0d863b2020-11-24T21:58:20ZengElsevierCellular and Molecular Gastroenterology and Hepatology2352-345X2020-01-0192257276The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummarySilvia Elena Molina-Castro0Camille Tiffon1Julie Giraud2Hélène Boeuf3Elodie Sifre4Alban Giese5Geneviève Belleannée6Philippe Lehours7Emilie Bessède8Francis Mégraud9Pierre Dubus10Cathy Staedel11Christine Varon12INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; University of Costa Rica, San José, Costa RicaINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceINSERM, UMR1026, Bioingénierie tissulaire (BioTis), University of Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceCentre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1212, University of Bordeaux, Bordeaux, France; Cathy Staedel, PhD, INSERM U1212, “ARN: Régulations naturelle et artificielle” (ARNA)-Unités Mixtes de Recherche (UMR) Centre national de la recherche scientifique (CNRS) 5320, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 57 57 10 15.INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Correspondence Address correspondence to: Christine Varon, PhD, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 56 79 60 18.Background & Aims: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. Methods: Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. Results: LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other’s expression. Loss-of-function experiments showed that LATS2 restricts H pylori–induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori–induced preneoplastic changes. Conclusions: H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host–pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development. Keywords: YAP1, Epithelial-to-Mesenchymal Transition, Adenocarcinoma, CagAhttp://www.sciencedirect.com/science/article/pii/S2352345X19301432 |