The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary

Background & Aims: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostas...

Full description

Bibliographic Details
Main Authors: Silvia Elena Molina-Castro, Camille Tiffon, Julie Giraud, Hélène Boeuf, Elodie Sifre, Alban Giese, Geneviève Belleannée, Philippe Lehours, Emilie Bessède, Francis Mégraud, Pierre Dubus, Cathy Staedel, Christine Varon
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:Cellular and Molecular Gastroenterology and Hepatology
Online Access:http://www.sciencedirect.com/science/article/pii/S2352345X19301432
id doaj-5f0b0c73c00e4cd0a7d97071ba0d863b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Silvia Elena Molina-Castro
Camille Tiffon
Julie Giraud
Hélène Boeuf
Elodie Sifre
Alban Giese
Geneviève Belleannée
Philippe Lehours
Emilie Bessède
Francis Mégraud
Pierre Dubus
Cathy Staedel
Christine Varon
spellingShingle Silvia Elena Molina-Castro
Camille Tiffon
Julie Giraud
Hélène Boeuf
Elodie Sifre
Alban Giese
Geneviève Belleannée
Philippe Lehours
Emilie Bessède
Francis Mégraud
Pierre Dubus
Cathy Staedel
Christine Varon
The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
Cellular and Molecular Gastroenterology and Hepatology
author_facet Silvia Elena Molina-Castro
Camille Tiffon
Julie Giraud
Hélène Boeuf
Elodie Sifre
Alban Giese
Geneviève Belleannée
Philippe Lehours
Emilie Bessède
Francis Mégraud
Pierre Dubus
Cathy Staedel
Christine Varon
author_sort Silvia Elena Molina-Castro
title The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
title_short The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
title_full The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
title_fullStr The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
title_full_unstemmed The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummary
title_sort hippo kinase lats2 controls helicobacter pylori-induced epithelial-mesenchymal transition and intestinal metaplasia in gastric mucosasummary
publisher Elsevier
series Cellular and Molecular Gastroenterology and Hepatology
issn 2352-345X
publishDate 2020-01-01
description Background & Aims: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. Methods: Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. Results: LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other’s expression. Loss-of-function experiments showed that LATS2 restricts H pylori–induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori–induced preneoplastic changes. Conclusions: H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host–pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development. Keywords: YAP1, Epithelial-to-Mesenchymal Transition, Adenocarcinoma, CagA
url http://www.sciencedirect.com/science/article/pii/S2352345X19301432
work_keys_str_mv AT silviaelenamolinacastro thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT camilletiffon thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT juliegiraud thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT heleneboeuf thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT elodiesifre thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT albangiese thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT genevievebelleannee thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT philippelehours thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT emiliebessede thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT francismegraud thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT pierredubus thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT cathystaedel thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT christinevaron thehippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT silviaelenamolinacastro hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT camilletiffon hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT juliegiraud hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT heleneboeuf hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT elodiesifre hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT albangiese hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT genevievebelleannee hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT philippelehours hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT emiliebessede hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT francismegraud hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT pierredubus hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT cathystaedel hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
AT christinevaron hippokinaselats2controlshelicobacterpyloriinducedepithelialmesenchymaltransitionandintestinalmetaplasiaingastricmucosasummary
_version_ 1725852309492072448
spelling doaj-5f0b0c73c00e4cd0a7d97071ba0d863b2020-11-24T21:58:20ZengElsevierCellular and Molecular Gastroenterology and Hepatology2352-345X2020-01-0192257276The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric MucosaSummarySilvia Elena Molina-Castro0Camille Tiffon1Julie Giraud2Hélène Boeuf3Elodie Sifre4Alban Giese5Geneviève Belleannée6Philippe Lehours7Emilie Bessède8Francis Mégraud9Pierre Dubus10Cathy Staedel11Christine Varon12INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; University of Costa Rica, San José, Costa RicaINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceINSERM, UMR1026, Bioingénierie tissulaire (BioTis), University of Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, FranceCentre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, FranceINSERM, UMR1212, University of Bordeaux, Bordeaux, France; Cathy Staedel, PhD, INSERM U1212, “ARN: Régulations naturelle et artificielle” (ARNA)-Unités Mixtes de Recherche (UMR) Centre national de la recherche scientifique (CNRS) 5320, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 57 57 10 15.INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France; Correspondence Address correspondence to: Christine Varon, PhD, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 56 79 60 18.Background & Aims: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. Methods: Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. Results: LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other’s expression. Loss-of-function experiments showed that LATS2 restricts H pylori–induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori–induced preneoplastic changes. Conclusions: H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host–pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development. Keywords: YAP1, Epithelial-to-Mesenchymal Transition, Adenocarcinoma, CagAhttp://www.sciencedirect.com/science/article/pii/S2352345X19301432