A Computable Gaussian Quantum Correlation for Continuous-Variable Systems

Generally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display=&quo...

Full description

Bibliographic Details
Main Authors: Liang Liu, Jinchuan Hou, Xiaofei Qi
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/9/1190
id doaj-5ed12a78b51d42639505729d3edd6de5
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Liang Liu
Jinchuan Hou
Xiaofei Qi
spellingShingle Liang Liu
Jinchuan Hou
Xiaofei Qi
A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
Entropy
continuous-variable systems
Gaussian states
Gaussian geometric discord
Gaussian channels
author_facet Liang Liu
Jinchuan Hou
Xiaofei Qi
author_sort Liang Liu
title A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
title_short A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
title_full A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
title_fullStr A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
title_full_unstemmed A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
title_sort computable gaussian quantum correlation for continuous-variable systems
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-09-01
description Generally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-mode continuous-variable system, a computable Gaussian quantum correlation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is proposed. For any state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> of the system, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> depends only on the covariant matrix of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> without any measurements performed on a subsystem or any optimization procedures, and thus is easily computed. Furthermore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> has the following attractive properties: (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is independent of the mean of states, is symmetric about the subsystems and has no ancilla problem; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is locally Gaussian unitary invariant; (3) for a Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> is a product state; and (4) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><mrow><mo>(</mo><msub><mo>Φ</mo><mi>A</mi></msub><mo>⊗</mo><msub><mo>Φ</mo><mi>B</mi></msub><mo>)</mo></mrow><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> holds for any Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> and any Gaussian channels <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>A</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>B</mi></msub></semantics></math></inline-formula> performed on the subsystem A and B, respectively. Therefore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is a nice Gaussian correlation which describes the same Gaussian correlation as Gaussian quantum discord and Gaussian geometric discord when restricted on Gaussian states. As an application of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, a noninvasive quantum method for detecting intracellular temperature is proposed.
topic continuous-variable systems
Gaussian states
Gaussian geometric discord
Gaussian channels
url https://www.mdpi.com/1099-4300/23/9/1190
work_keys_str_mv AT liangliu acomputablegaussianquantumcorrelationforcontinuousvariablesystems
AT jinchuanhou acomputablegaussianquantumcorrelationforcontinuousvariablesystems
AT xiaofeiqi acomputablegaussianquantumcorrelationforcontinuousvariablesystems
AT liangliu computablegaussianquantumcorrelationforcontinuousvariablesystems
AT jinchuanhou computablegaussianquantumcorrelationforcontinuousvariablesystems
AT xiaofeiqi computablegaussianquantumcorrelationforcontinuousvariablesystems
_version_ 1717367026585960448
spelling doaj-5ed12a78b51d42639505729d3edd6de52021-09-26T00:06:58ZengMDPI AGEntropy1099-43002021-09-01231190119010.3390/e23091190A Computable Gaussian Quantum Correlation for Continuous-Variable SystemsLiang Liu0Jinchuan Hou1Xiaofei Qi2College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Mathematics, Taiyuan University of Technology, Taiyuan 030024, ChinaSchool of Mathematical Science, Shanxi University, Taiyuan 030006, ChinaGenerally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-mode continuous-variable system, a computable Gaussian quantum correlation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is proposed. For any state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> of the system, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> depends only on the covariant matrix of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> without any measurements performed on a subsystem or any optimization procedures, and thus is easily computed. Furthermore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> has the following attractive properties: (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is independent of the mean of states, is symmetric about the subsystems and has no ancilla problem; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is locally Gaussian unitary invariant; (3) for a Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> is a product state; and (4) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><mrow><mo>(</mo><msub><mo>Φ</mo><mi>A</mi></msub><mo>⊗</mo><msub><mo>Φ</mo><mi>B</mi></msub><mo>)</mo></mrow><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> holds for any Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> and any Gaussian channels <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>A</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>B</mi></msub></semantics></math></inline-formula> performed on the subsystem A and B, respectively. Therefore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is a nice Gaussian correlation which describes the same Gaussian correlation as Gaussian quantum discord and Gaussian geometric discord when restricted on Gaussian states. As an application of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, a noninvasive quantum method for detecting intracellular temperature is proposed.https://www.mdpi.com/1099-4300/23/9/1190continuous-variable systemsGaussian statesGaussian geometric discordGaussian channels