A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
Generally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display=&quo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/9/1190 |
id |
doaj-5ed12a78b51d42639505729d3edd6de5 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Liang Liu Jinchuan Hou Xiaofei Qi |
spellingShingle |
Liang Liu Jinchuan Hou Xiaofei Qi A Computable Gaussian Quantum Correlation for Continuous-Variable Systems Entropy continuous-variable systems Gaussian states Gaussian geometric discord Gaussian channels |
author_facet |
Liang Liu Jinchuan Hou Xiaofei Qi |
author_sort |
Liang Liu |
title |
A Computable Gaussian Quantum Correlation for Continuous-Variable Systems |
title_short |
A Computable Gaussian Quantum Correlation for Continuous-Variable Systems |
title_full |
A Computable Gaussian Quantum Correlation for Continuous-Variable Systems |
title_fullStr |
A Computable Gaussian Quantum Correlation for Continuous-Variable Systems |
title_full_unstemmed |
A Computable Gaussian Quantum Correlation for Continuous-Variable Systems |
title_sort |
computable gaussian quantum correlation for continuous-variable systems |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-09-01 |
description |
Generally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-mode continuous-variable system, a computable Gaussian quantum correlation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is proposed. For any state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> of the system, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> depends only on the covariant matrix of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> without any measurements performed on a subsystem or any optimization procedures, and thus is easily computed. Furthermore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> has the following attractive properties: (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is independent of the mean of states, is symmetric about the subsystems and has no ancilla problem; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is locally Gaussian unitary invariant; (3) for a Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> is a product state; and (4) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><mrow><mo>(</mo><msub><mo>Φ</mo><mi>A</mi></msub><mo>⊗</mo><msub><mo>Φ</mo><mi>B</mi></msub><mo>)</mo></mrow><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> holds for any Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> and any Gaussian channels <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>A</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>B</mi></msub></semantics></math></inline-formula> performed on the subsystem A and B, respectively. Therefore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is a nice Gaussian correlation which describes the same Gaussian correlation as Gaussian quantum discord and Gaussian geometric discord when restricted on Gaussian states. As an application of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, a noninvasive quantum method for detecting intracellular temperature is proposed. |
topic |
continuous-variable systems Gaussian states Gaussian geometric discord Gaussian channels |
url |
https://www.mdpi.com/1099-4300/23/9/1190 |
work_keys_str_mv |
AT liangliu acomputablegaussianquantumcorrelationforcontinuousvariablesystems AT jinchuanhou acomputablegaussianquantumcorrelationforcontinuousvariablesystems AT xiaofeiqi acomputablegaussianquantumcorrelationforcontinuousvariablesystems AT liangliu computablegaussianquantumcorrelationforcontinuousvariablesystems AT jinchuanhou computablegaussianquantumcorrelationforcontinuousvariablesystems AT xiaofeiqi computablegaussianquantumcorrelationforcontinuousvariablesystems |
_version_ |
1717367026585960448 |
spelling |
doaj-5ed12a78b51d42639505729d3edd6de52021-09-26T00:06:58ZengMDPI AGEntropy1099-43002021-09-01231190119010.3390/e23091190A Computable Gaussian Quantum Correlation for Continuous-Variable SystemsLiang Liu0Jinchuan Hou1Xiaofei Qi2College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Mathematics, Taiyuan University of Technology, Taiyuan 030024, ChinaSchool of Mathematical Science, Shanxi University, Taiyuan 030006, ChinaGenerally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-mode continuous-variable system, a computable Gaussian quantum correlation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is proposed. For any state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> of the system, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> depends only on the covariant matrix of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> without any measurements performed on a subsystem or any optimization procedures, and thus is easily computed. Furthermore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> has the following attractive properties: (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is independent of the mean of states, is symmetric about the subsystems and has no ancilla problem; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is locally Gaussian unitary invariant; (3) for a Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> is a product state; and (4) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><mrow><mo>(</mo><msub><mo>Φ</mo><mi>A</mi></msub><mo>⊗</mo><msub><mo>Φ</mo><mi>B</mi></msub><mo>)</mo></mrow><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mi mathvariant="script">M</mi><mrow><mo>(</mo><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> holds for any Gaussian state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mrow><mi>A</mi><mi>B</mi></mrow></msub></semantics></math></inline-formula> and any Gaussian channels <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>A</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Φ</mo><mi>B</mi></msub></semantics></math></inline-formula> performed on the subsystem A and B, respectively. Therefore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula> is a nice Gaussian correlation which describes the same Gaussian correlation as Gaussian quantum discord and Gaussian geometric discord when restricted on Gaussian states. As an application of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, a noninvasive quantum method for detecting intracellular temperature is proposed.https://www.mdpi.com/1099-4300/23/9/1190continuous-variable systemsGaussian statesGaussian geometric discordGaussian channels |