Generalized Poincaré algebras and Lovelock–Cartan gravity theory
We show that the Lagrangian for Lovelock–Cartan gravity theory can be reformulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern–Simons theory invariant under the generalized Poincaré algebra B2n+1, while in even dimensions the L...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2015-03-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269315000489 |
id |
doaj-5ec986e08ae54f9bae75a67efd41bb53 |
---|---|
record_format |
Article |
spelling |
doaj-5ec986e08ae54f9bae75a67efd41bb532020-11-25T00:53:42ZengElsevierPhysics Letters B0370-26932015-03-01742310316Generalized Poincaré algebras and Lovelock–Cartan gravity theoryP.K. Concha0D.M. Peñafiel1E.K. Rodríguez2P. Salgado3Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, ChileDepartamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, ChileDepartamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, ChileCorresponding author.; Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, ChileWe show that the Lagrangian for Lovelock–Cartan gravity theory can be reformulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern–Simons theory invariant under the generalized Poincaré algebra B2n+1, while in even dimensions the Lagrangian leads to a Born–Infeld theory invariant under a subalgebra of the B2n+1 algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern–Pontryagin character for the B2n+1 group.http://www.sciencedirect.com/science/article/pii/S0370269315000489 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
P.K. Concha D.M. Peñafiel E.K. Rodríguez P. Salgado |
spellingShingle |
P.K. Concha D.M. Peñafiel E.K. Rodríguez P. Salgado Generalized Poincaré algebras and Lovelock–Cartan gravity theory Physics Letters B |
author_facet |
P.K. Concha D.M. Peñafiel E.K. Rodríguez P. Salgado |
author_sort |
P.K. Concha |
title |
Generalized Poincaré algebras and Lovelock–Cartan gravity theory |
title_short |
Generalized Poincaré algebras and Lovelock–Cartan gravity theory |
title_full |
Generalized Poincaré algebras and Lovelock–Cartan gravity theory |
title_fullStr |
Generalized Poincaré algebras and Lovelock–Cartan gravity theory |
title_full_unstemmed |
Generalized Poincaré algebras and Lovelock–Cartan gravity theory |
title_sort |
generalized poincaré algebras and lovelock–cartan gravity theory |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 |
publishDate |
2015-03-01 |
description |
We show that the Lagrangian for Lovelock–Cartan gravity theory can be reformulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern–Simons theory invariant under the generalized Poincaré algebra B2n+1, while in even dimensions the Lagrangian leads to a Born–Infeld theory invariant under a subalgebra of the B2n+1 algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern–Pontryagin character for the B2n+1 group. |
url |
http://www.sciencedirect.com/science/article/pii/S0370269315000489 |
work_keys_str_mv |
AT pkconcha generalizedpoincarealgebrasandlovelockcartangravitytheory AT dmpenafiel generalizedpoincarealgebrasandlovelockcartangravitytheory AT ekrodriguez generalizedpoincarealgebrasandlovelockcartangravitytheory AT psalgado generalizedpoincarealgebrasandlovelockcartangravitytheory |
_version_ |
1725237008052256768 |