Genetically Distinct Behavioral Modules Underlie Natural Variation in Thermal Performance Curves

Thermal reaction norms pervade organismal traits as stereotyped responses to temperature, a fundamental environmental input into sensory and physiological systems. Locomotory behavior represents an especially plastic read-out of animal response, with its dynamic dependence on environmental stimuli p...

Full description

Bibliographic Details
Main Authors: Gregory W. Stegeman, Scott E. Baird, William S. Ryu, Asher D. Cutter
Format: Article
Language:English
Published: Oxford University Press 2019-07-01
Series:G3: Genes, Genomes, Genetics
Subjects:
QTL
Online Access:http://g3journal.org/lookup/doi/10.1534/g3.119.400043
Description
Summary:Thermal reaction norms pervade organismal traits as stereotyped responses to temperature, a fundamental environmental input into sensory and physiological systems. Locomotory behavior represents an especially plastic read-out of animal response, with its dynamic dependence on environmental stimuli presenting a challenge for analysis and for understanding the genomic architecture of heritable variation. Here we characterize behavioral reaction norms as thermal performance curves for the nematode Caenorhabditis briggsae, using a collection of 23 wild isolate genotypes and 153 recombinant inbred lines to quantify the extent of genetic and plastic variation in locomotory behavior to temperature changes. By reducing the dimensionality of the multivariate phenotypic response with a function-valued trait framework, we identified genetically distinct behavioral modules that contribute to the heritable variation in the emergent overall behavioral thermal performance curve. Quantitative trait locus mapping isolated regions on Chromosome II associated with locomotory activity at benign temperatures and Chromosome V loci related to distinct aspects of sensitivity to high temperatures, with each quantitative trait locus explaining up to 28% of trait variation. These findings highlight how behavioral responses to environmental inputs as thermal reaction norms can evolve through independent changes to genetically distinct modular components of such complex phenotypes.
ISSN:2160-1836