Discrepancy between Power Radiated and the Power Loss Due to Radiation Reaction for an Accelerated Charge

We examine here the discrepancy between the radiated power, calculated from the Poynting flux at infinity, and the power loss due to radiation reaction for an accelerated charge. It is emphasized that one needs to maintain a clear distinction between the electromagnetic power received by distant obs...

Full description

Bibliographic Details
Main Author: Ashok K. Singal
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/11/1833
Description
Summary:We examine here the discrepancy between the radiated power, calculated from the Poynting flux at infinity, and the power loss due to radiation reaction for an accelerated charge. It is emphasized that one needs to maintain a clear distinction between the electromagnetic power received by distant observers and the mechanical power loss undergone by the charge. In the literature, both quantities are treated as almost synonymous; the two in general could, however, be quite different. It is shown that in the case of a periodic motion, the two formulations do yield the power loss in a time averaged sense to be the same, even though, the instantaneous rates are quite different. It is demonstrated that the discordance between the two power formulas merely reflects the difference in the power going in self-fields of the charge between the retarded and present times. In particular, in the case of a uniformly accelerated charge, power going into the self-fields at the present time is equal to the power that was going into the self-fields at the retarded time plus the power going in acceleration fields, usually called radiation. From a study of the fields in regions far off from the time retarded positions of the uniformly accelerated charge, it is shown that effectively the fields, including the acceleration fields, remain around the ‘present’ position of the charge which itself is moving toward infinity due to its continuous constant acceleration, with no other Poynting flow that could be termed as ‘radiation emitted’ by the charge.
ISSN:2073-8994