Mint3 is dispensable for pancreatic and kidney functions in mice

Munc-18 interacting protein 3 (Mint3) is an activator of hypoxia-inducible factor-1 in cancer cells, macrophages, and cancer-associated fibroblasts under pathological conditions. However, exactly which cells highly express Mint3 in vivo and whether Mint3 depletion affects their physiological functio...

Full description

Bibliographic Details
Main Authors: Yoohwa Chung, Yurika Saitoh, Tetsuro Hayashi, Yuya Fukui, Nobuo Terada, Motoharu Seiki, Yoshinori Murakami, Takeharu Sakamoto
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Biochemistry and Biophysics Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405580820301825
Description
Summary:Munc-18 interacting protein 3 (Mint3) is an activator of hypoxia-inducible factor-1 in cancer cells, macrophages, and cancer-associated fibroblasts under pathological conditions. However, exactly which cells highly express Mint3 in vivo and whether Mint3 depletion affects their physiological functions remain unclear. Here, we surveyed mouse tissues for specific expression of Mint3 by comparing Mint3 expression in wild-type and Mint3-knockout mice. Interestingly, immunohistochemical analyses revealed that Mint3 was highly expressed in islet cells of the pancreas, distal tubular epithelia of the kidney, choroid plexus ependymal cells of the cerebrum, medullary cells of the adrenal gland, and epithelial cells of the seminal gland. We also studied whether Mint3 depletion affects the physiological functions of the islets and kidneys. Mint3-knockout mice did not show any abnormalities in glucose-tolerance and urine-biochemical tests, indicating that Mint3 depletion was compensated for in these organs. Thus, loss of Mint3 might be compensated in the islets and kidneys under physiological conditions in mice.
ISSN:2405-5808